Skip to main content

Nanoparticles and Their Role in Bioenergy Production

  • Chapter
  • First Online:
Nanotechnology for Food, Agriculture, and Environment

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 1046 Accesses

Abstract

With the advent of industrialization and globalization, the consumption of energy sources has reached a pinnacle from where the great minds have apprehension about sustainability. The focus has been shifted from fossil fuels to sustainable and cost-effective alternative energy sources to meet the requirement of the future generation. These energy sources include bioenergy in the form of biofuel, biodiesel, bioethanol, and biogas usually produced from the various organic biomasses. There are various steps involving the production of bioenergy from biomass and few of them hinder their commercialization. Nanotechnology offers a meaningful solution to the conventional bioprocesses used for the bioenergy production by changing the characteristics of the feed materials and biocatalysts. Nanoparticles manifest many unique characteristics like small size, large surface area, chemical stability, uniformity, and the ability of dispersion, and their electronic, magnetic, optical, physical, and chemical properties outclass them with their counterpart technologies. This chapter discusses an overview of the advantages of different types of nanoparticles used at various steps in the bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaraju RR, Dasgupta N, Virkar AV (2008) Composite Nafion membranes containing nanosize TiO2∕ SnO2 for proton exchange membrane fuel cells. J Electrochem Soc 155(12):B1307–B1313

    Article  CAS  Google Scholar 

  • Abd-Elsalam K, Mohamed AA, Prasad R (2019) Magnetic Nanostructures: Environmental and Agricultural Applications. Springer International Publishing (ISBN 978-3-030-16438-6) https://www.springer.com/gp/book/9783030164386

  • Alzate CC, Toro OS (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31(13):2447–2459

    Article  CAS  Google Scholar 

  • Ambuchi JJ, Zhang Z, Shan L, Liang D, Zhang P, Feng Y (2017) Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment. Water Res 117:87–94

    Article  CAS  PubMed  Google Scholar 

  • An J, Jeon H, Lee J, Chang IS (2011) Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity. Environ Sci Technol 45(12):5441–5446

    Article  CAS  PubMed  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523

    Article  CAS  PubMed  Google Scholar 

  • Baskar G, Kumar RN, Melvin XH, Aiswarya R, Soumya S (2016) Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew Energ 98:23–28

    Article  CAS  Google Scholar 

  • Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50(5):1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BP’s Statistical Review of World Energy (2017) https://www.bp.com/content/dam/bp-country/de_ch/PDF/bp-statistical-review-of-world-energy-2017-full-report.pdf

  • Budarin V, Shuttleworth PS, Lanigan B, Clark JH (2013) Nanocatalysts for biofuels. In: Polshettiwar V, Asefa T (eds) Nanocatalysis synthesis and applications. Wiley, Hoboken, pp 595–614

    Chapter  Google Scholar 

  • Casals E, Barrena R, García A, González E, Delgado L, Busquets-Fité M, Font X, Arbiol J, Glatzel P, Kvashnina K, Sánchez A (2014) Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 10(14):2801–2808

    Article  CAS  PubMed  Google Scholar 

  • Chang RH, Jang J, Wu KC (2011) Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chem 13(10):2844–2850

    Article  CAS  Google Scholar 

  • Chen G, Guo CY, Qiao H, Ye M, Qiu X, Yue C (2013) Well-dispersed sulfated zirconia nanoparticles as high-efficiency catalysts for the synthesis of bis (indolyl) methanes and biodiesel. Catal Commun 41:70–74

    Article  CAS  Google Scholar 

  • Chen B, Li F, Huang Z, Yuan G (2017) Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran. Appl Catal B 200:192–199

    Article  CAS  Google Scholar 

  • Cherian E, Dharmendirakumar M, Baskar G (2015) Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese J Catal 36(8):1223–1229

    Article  CAS  Google Scholar 

  • Cipolatti EP, Silva MJ, Klein M, Feddern V, Feltes MM, Oliveira JV, Ninow JL, de Oliveira D (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym 99:56–67

    Article  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design – a review. Renew Sust Energ Rev 15(1):366–378

    Article  CAS  Google Scholar 

  • Dehkordi AM, Ghasemi M (2012) Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Process Technol 97:45–51

    Article  CAS  Google Scholar 

  • Di Serio M, Tesser R, Pengmei L, Santacesaria E (2007) Heterogeneous catalysts for biodiesel production. Energy Fuel 22(1):207–217

    Article  CAS  Google Scholar 

  • Donoso-Bravo A, Mairet F (2012) Determining the limiting reaction in anaerobic digestion processes. How has this been tackled? J Chem Technol Biotechnol 87(10):1375–1378

    Article  CAS  Google Scholar 

  • Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujii M, Yoshimura C, Tawfik A (2017) Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convers Manage 140:133–144

    Article  CAS  Google Scholar 

  • Fan Y, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42(21):8101–8107

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Zhang F, Zeng HY, Guo F (2011) Production of glucose by hydrolysis of cellulose at 423 K in the presence of activated hydrotalcite nanoparticles. Bioresour Technol 102(17):8017–8021

    Article  CAS  PubMed  Google Scholar 

  • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327

    CAS  PubMed  Google Scholar 

  • García A, Delgado L, Torà JA, Casals E, González E, Puntes V, Font X, Carrera J, Sánchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199:64–72

    Article  PubMed  CAS  Google Scholar 

  • Ghasemi M, Daud WR, Rahimnejad M, Rezayi M, Fatemi A, Jafari Y, Somalu MR, Manzour A (2013a) Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int J Hydrogen Energy 38(22):9533–9540

    Article  CAS  Google Scholar 

  • Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Daud WR, Hassan SH, Heng LY, Alam J, Oh SE (2013b) Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl Energy 102:1050–1056

    Article  CAS  Google Scholar 

  • Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CN, Pastorin G (2012) Iron oxide filled magnetic carbon nanotube–enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28(49):16864–16873

    Article  CAS  PubMed  Google Scholar 

  • Gupta J, Agarwal M (2016) Preparation and characterization of CaO nanoparticle for biodiesel production. AIP Conf Proc. https://doi.org/10.1063/1.4945186

  • Gurunathan B, Ravi A (2015) Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresour Technol 190:424–428

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88(8):2685–2690

    Article  CAS  Google Scholar 

  • Hussain M, Ahmad R, Liu Y, Liu B, He M, He N (2017) Applications of nanomaterials and biological materials in bioenergy. J Nanosci Nanotechnol 17(12):8654–8666

    Article  CAS  Google Scholar 

  • Hussein AK (2015) Applications of nanotechnology in renewable energies – a comprehensive overview and understanding. Renew Sust Energ Rev 42:460–476

    Article  CAS  Google Scholar 

  • Hutchings G (2013) Nanocatalysis: synthesis and applications. John Wiley and Sons, Weinheim

    Google Scholar 

  • Ingram LO (1989) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9(4):305–319

    Article  Google Scholar 

  • Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng 3:289–299

    Google Scholar 

  • Jia Y, Hu Y, Zhu Y, Che L, Shen Q, Zhang J, Li X (2011) Oligoamines conjugated chitosan derivatives: synthesis, characterization, in vitro and in vivo biocompatibility evaluations. Carbohydr Polym 83(3):1153–1161

    Article  CAS  Google Scholar 

  • Khan MJ, Husain Q, Azam A (2012) Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: applications to the hydrolysis of starch. Biotechnol Bioprocess Eng 17(2):377–384

    Article  CAS  Google Scholar 

  • Kim YK, Lee H (2016) Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresour Technol 204:139–144

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Park SE, Lee H, Yun JY (2014) Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour Technol 159:446–450

    Article  CAS  PubMed  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710

    Article  CAS  Google Scholar 

  • Kumar Gupta S, Kumari S, Reddy K, Bux F (2013) Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol 34(13–14):1653–1670

    Article  CAS  Google Scholar 

  • Larsen SC (2007) Nanocrystalline zeolites and zeolite structures: synthesis, characterization, and applications. J Phys Chem C 111(50):18464–18474

    Article  CAS  Google Scholar 

  • Lee YC, Huh YS, Farooq W, Chung J, Han JI, Shin HJ, Jeong SH, Lee JS, Oh YK, Park JY (2013) Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour Technol 137:74–81

    Article  CAS  PubMed  Google Scholar 

  • Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916

    Article  CAS  PubMed  Google Scholar 

  • Li M (2017) World Energy 2017-2050: Annual report. https://content.csbs.utah.edu/~mli/2017/World%20Energy%202017-2050.pdf

    Google Scholar 

  • Lin YF, Chen JH, Hsu SH, Hsiao HC, Chung TW, Tung KL (2012) The synthesis of Lewis acid ZrO2 nanoparticles and their applications in phospholipid adsorption from Jatropha oil used for biofuel. J Colloid Interface Sci 368(1):660–662

    Article  CAS  PubMed  Google Scholar 

  • Liu KK, Chen MF, Chen PY, Lee TJ, Cheng CL, Chang CC, Ho YP, Chao JI (2008) Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 19(20):205102

    Article  PubMed  CAS  Google Scholar 

  • Lu AH, Salabas EE, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  • Luna-del Risco M, Orupõld K, Dubourguier HC (2011) Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189(1–2):603–608

    Article  CAS  Google Scholar 

  • Lupoi JS, Smith EA (2011) Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng 108(12):2835–2843

    Article  CAS  PubMed  Google Scholar 

  • Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sust Ener Rev 15(6):3141–3155

    Article  CAS  Google Scholar 

  • Malik P, Sangwan A (2012) Nanotechnology: a tool for improving efficiency of bio-energy. J Eng Appl Sci 1:37–49

    Google Scholar 

  • Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sust Energ Rev 10(3):248–268

    Article  CAS  Google Scholar 

  • Mendes AA, Oliveira PC, Castro HF, Giordano RD (2011) Application of chitosan as support for immobilization of enzymes of industrial interest. Quím Nova 34(5):831–840

    CAS  Google Scholar 

  • Mielby J, Abildstrøm JO, Wang F, Kasama T, Weidenthaler C, Kegnæs S (2014) Oxidation of bioethanol using Zeolite-encapsulated gold nanoparticles. Angew Chem Int Ed 126(46):12721–12724

    Article  Google Scholar 

  • Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7(11):7194–7222

    Article  CAS  Google Scholar 

  • Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12(102):20140891. https://doi.org/10.1098/rsif.2014.0891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas P, Lassalle V, Ferreira ML (2014) Development of a magnetic biocatalyst useful for the synthesis of ethyloleate. Bioprocess Biosyst Eng 37(3):585–591

    Article  CAS  PubMed  Google Scholar 

  • Pathak PK, Raj J, Saxena G, Sharma US (2017) A review on production of biodiesel by transesterification using heterogeneous nanocatalyst. Int J Sci Res Dev 5(2):631–636

    Google Scholar 

  • Pugh S, McKenna R, Moolick R, Nielsen DR (2011) Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Can J Chem Eng 89(1):2–12

    Article  CAS  Google Scholar 

  • Rad AG, Abbasi H, Afzali MH (2011) Gold nanoparticles: synthesizing, characterizing and reviewing novel application in recent years. Phys Procedia 22:203–208

    Article  Google Scholar 

  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24(2):192–196

    CAS  Google Scholar 

  • Rahimnejad M, Ghasemi M, Najafpour GD, Ismail M, Mohammad AW, Ghoreyshi AA, Hassan SH (2012) Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochim Acta 85:700–706

    Article  CAS  Google Scholar 

  • Rai M, dos Santos JC, Soler MF, Marcelino PR, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250

    Article  CAS  Google Scholar 

  • Raita M, Arnthong J, Champreda V, Laosiripojana N (2015) Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil. Fuel Process Technol 134:189–197

    Article  CAS  Google Scholar 

  • Ram MS, Singh L, Suryanarayana MV, Alam SI (2000) Effect of iron, nickel and cobalt on bacterial activity and dynamics during anaerobic oxidation of organic matter. Water Air Soil Poll 117(1–4):305–312

    Article  Google Scholar 

  • Rao PP, Seenayya G (1994) Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World J Microbiol Biotechnol 10(2):211–214

    Article  Google Scholar 

  • Reis P, Witula T, Holmberg K (2008) Mesoporous materials as host for an entrapped enzyme. Micropor Mesopor Mat 110(2–3):355–362

    Article  CAS  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Article  PubMed  Google Scholar 

  • Santos FC, Paim LL, da Silva JL, Stradiotto NR (2016) Electrochemical determination of total reducing sugars from bioethanol production using glassy carbon electrode modified with graphene oxide containing copper nanoparticles. Fuel 163:112–121

    Article  CAS  Google Scholar 

  • Schrand AM, Hens SA, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34(1–2):18–74

    Article  CAS  Google Scholar 

  • Schügerl K, Hubbuch J (2005) Integrated bioprocesses. Curr Opin Microbiol 8(3):294–300

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Venkatramanan V, Prasad R (2019) Microbial fuel cell: Sustainable green technology for bioelectricity generation and wastewater treatment. In: Sustainable Green Technologies for Environmental Management (eds. Shah S, Venkatramanan V, Prasad R), Springer Springer Nature Singapore Pte Ltd. 199–218

    Google Scholar 

  • Shuttleworth PS, Parker HL, Hunt AJ, Budarin VL, Matharu AS, Clark JH (2014) Applications of nanoparticles in biomass conversion to chemicals and fuels. Green Chem 16(2):573–584

    Article  CAS  Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  CAS  PubMed  Google Scholar 

  • Souza KC, Mohallem ND, Sousa EM (2011) Magnetic nanocomposites: potential for applications in Biomedicine. Quím Nova 34(10):1692–1703

    Article  Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015) Application of cellulases in biofuels industries: an overview. J Biofuel Bioenerg 1(1):55–63

    Article  Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Ramteke PW (2016) Application of ZnO nanoparticles for improving the thermal and pH stability of crude cellulase obtained from Aspergillus fumigatus AA001. Front Microbiol 7:514. https://doi.org/10.3389/fmicb.2016.00514

    Article  PubMed  PubMed Central  Google Scholar 

  • Straathof AJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19(3):755–762

    Article  CAS  PubMed  Google Scholar 

  • Su L, Shi X, Guo G, Zhao A, Zhao Y (2013) Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production. J Mater Cycle Waste Manage 15(4):461–468

    Article  CAS  Google Scholar 

  • Tan C, Zhao S, Yang G, Hu S, Qin X (2015) Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries. Ionics 21(4):987–994

    Article  CAS  Google Scholar 

  • Taufiqurrahmi N, Mohamed AR, Bhatia S (2011) Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies. Bioresour Technol 102(22):10686–10694

    Article  CAS  PubMed  Google Scholar 

  • Uygun DA, Öztürk N, Akgöl S, Denizli A (2012) Novel magnetic nanoparticles for the hydrolysis of starch with Bacillus licheniformis α-amylase. J Appl Polym Sci 123(5):2574–2581

    Article  CAS  Google Scholar 

  • Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dou P, Zhao P, Zhao C, Ding Y, Xu P (2009) Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. Chem Sus Chem 2(10):947–950

    Article  CAS  Google Scholar 

  • Wang X, Liu X, Zhao C, Ding Y, Xu P (2011) Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Bioresour Technol 102(10):6352–6355

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L (2012) Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces 4(2):977–981

    Article  CAS  PubMed  Google Scholar 

  • Wen L, Wang Y, Lu D, Hu S, Han H (2010) Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89(9):2267–2271

    Article  CAS  Google Scholar 

  • Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J (2013) TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J Power Sources 234:100–106

    Article  CAS  Google Scholar 

  • Xie W, Ma N (2009) Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energ Fuel 23(3):1347–1353

    Article  CAS  Google Scholar 

  • Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 34(6):890–896

    Article  CAS  Google Scholar 

  • Xu X, Li Y, Gong Y, Zhang P, Li H, Wang Y (2012) Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J Am Chem Soc 134(41):16987–16990

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Wang M, Huang B, Liu R, Zhao J (2013) Graphene supported Pt-Co alloy nanoparticles as cathode catalyst for microbial fuel cells. Int J Electrochem Sci 8:149–158

    CAS  Google Scholar 

  • Yang Y, Xu M, Wall JD, Hu Z (2012) Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag 32(5):816–825

    Article  CAS  PubMed  Google Scholar 

  • Younes NR, Amara S, Mrad I, Ben-Slama I, Jeljeli M, Omri K, El Ghoul J, El Mir L, Rhouma KB, Abdelmelek H, Sakly M (2015) Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res 22(11):8728–8737

    Article  CAS  Google Scholar 

  • Yu CY, Huang LY, Kuan I, Lee SL (2013) Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. Int J Mol Sci 14(12):24074–24086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yulianti CH, Ediati R, Hartanto D, Purbaningtias TE, Chisaki Y, Jalil AA, Ku CK, Prasetyoko D (2014) Synthesis of CaO-ZnO nanoparticles catalyst and its application in transesterification of refined palm oil. Bull Chem Reac Eng Cat 9(2):100–110

    Google Scholar 

  • Zaidi AA, RuiZhe F, Shi Y, Khan SZ, Mushtaq K (2018) Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. Int J Hydrogen Energy 18:1–12

    Google Scholar 

  • Zhang J, Wang L, Ji Y, Chen F, Xiao FS (2018) Mesoporous zeolites for biofuel upgrading and glycerol conversion. Front Chem Sci Eng 26(1):132–144

    Article  CAS  Google Scholar 

  • Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z (2014) Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12):12660–12668

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Li Y, Yin H, Liu Z, Luan E, Zhao F, Tang Z, Liu S (2015) Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci Adv 1(10):e1500372. https://doi.org/10.1126/sciadv.1500372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Zhang H, Chang F, Li H, Pan H, Xue W, Hu DY, Yang S (2015) Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J Ind Eng Chem 31:385–392

    Article  CAS  Google Scholar 

  • Zuliani A, Ivars F, Luque R (2018) Advances in nanocatalyst design for biofuel production. Chem Cat Chem 10(9):1968–1981

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brar, A., Kumar, M., Vivekanand, V., Pareek, N. (2020). Nanoparticles and Their Role in Bioenergy Production. In: Thangadurai, D., Sangeetha, J., Prasad, R. (eds) Nanotechnology for Food, Agriculture, and Environment. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31938-0_11

Download citation

Publish with us

Policies and ethics