Skip to main content

Distinguishing Functional from Non-functional Pituitary Macroadenomas with a Machine Learning Analysis

  • Conference paper
  • First Online:
XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 (MEDICON 2019)

Abstract

Pituitary adenomas are rare intracranial tumors that are often found incidentally in MR images. On the other hand, radiomics is a new field whose aim is converting images in mineable data; particularly, texture analysis is a postprocessing technique extracting quantitative parameters from the heterogeneity of pixel grey level. In this scenario, machine learning can be applied in order to classify these adenomas into functional and non-functional starting from features extracted through texture analysis on MRI images acquired through a protocol including a coronal T2-weighted Turbo Spin Echo sequence. The boosting of J48, a multinomial logistic regression and K nearest neighbour are implemented employing Knime analytics platform. Excluding J48 whose accuracy was 83.0%, multinomial logistic regression and K nearest neighbour achieved accuracies beyond 92.0% and the Area Under the Curve Receiving Characteristic Operator till 98.4%. Diagnosing correctly this delicate disease is crucial in order to achieve the best management as well as the most appropriate cure for patients. The novelty of this paper lies in proving the ability of the combination of radiomics and machine learning to pre-operatively predict tumoral behavior. Prior to this analysis it was believed that only blood tests or histopathological analysis could provide this information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gittleman, H., Ostrom, Q.T., Farah, P.D., et al.: Descriptive epidemiology of pituitary tumors in the United States, 2004–2009. J. Neurosurg. 121(3), 527–535 (2014)

    Article  Google Scholar 

  2. Ostrom, Q.T., Gittleman, H., Farah, P., et al.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 15(Suppl 2), ii1-56 (2013)

    Article  Google Scholar 

  3. Thapar, K., Laws, E.R.J.: Pituitary tumors. In: Kaye, A.W., Jr. LER, (eds.) Brain Tumors 2001, pp. 804–854. Churchill Livingstone, London (2001)

    Google Scholar 

  4. Wilson, P.J., Omay, S.B., Kacker, A., et al.: Endonasal endoscopic pituitary surgery in the elderly. J. Neurosurg. 128, 1–8 (2017)

    Google Scholar 

  5. Solari, D., Cavallo, L.M., Cappabianca, P.: Surgical approach to pituitary tumors. Handb. Clin. Neurol. 124, 291–301 (2014)

    Article  Google Scholar 

  6. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2015). https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  7. Lubner, M.G., Smith, A.D., Sandrasegaran, K., et al.: CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics 37(5), 1483–1503 (2017). https://doi.org/10.1148/rg.2017170056

    Article  Google Scholar 

  8. Malik, M.M., Abdallah, S., Ala’raj, M.: Data mining and predictive analytics applications for the delivery of healthcare services: a systematic literature review. Ann. Oper. Res. 270(1–2), 287–312 (2018)

    Article  MathSciNet  Google Scholar 

  9. Santini, S., Pescapè, A., Valente, A., et al.: Using fuzzy logic for improving clinical daily-care of β-thalassemia patients. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2017).. https://doi.org/10.1109/fuzz-ieee.2017.8015545

  10. Improta, G., Russo, M.A., Triassi, M., et al.: Use of the AHP methodology in system dynamics: modelling and simulation for health technology assessments to determine the correct prosthesis choice for hernia diseases. Math. Biosci. 299, 19–27 (2018). https://doi.org/10.1016/j.mbs.2018.03.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Romano, M., D’Addio, G., Clemente, F., et al.: Symbolic dynamic and frequency analysis in foetal monitoring. In: 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–5. IEEE (2014). https://doi.org/10.1109/memea.2014.6860122

  12. Johnson, K.W., Soto, J.T., Glicksberg, B.S., et al.: Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 71(23), 2668–2679 (2018)

    Article  Google Scholar 

  13. Choy, G., Khalilzadeh, O., Michalski, M., et al.: Cur-rent applications and future impact of machine learning in radiology. Radiology 288(2), 318–328 (2018)

    Article  Google Scholar 

  14. Kumar, V., Gu, Y., Basu, S., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012). https://doi.org/10.1016/j.mri.2012.06.010

    Article  Google Scholar 

  15. Zacharaki, E.I., Wang, S., Chawla, S., et al.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 62(6), 1609–1618 (2009)

    Article  Google Scholar 

  16. Juntu, J., Sijbers, J., De Backer, S., et al.: Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. J. Magn. Reson. Imaging 31(3), 680–689 (2010)

    Article  Google Scholar 

  17. Romeo, V., Maurea, S., Cuocolo, R., et al.: Characterization of adrenal lesions on unenhanced MRI using texture analysis: a machine-learning approach. J. Magn. Reson. Imaging 48(1), 198–204 (2018)

    Article  Google Scholar 

  18. Stanzione, A., Cuocolo, R., Cocozza, S., et al.: Detection of extraprostatic extension of cancer on biparametric MRI combining texture analysis and machine learning: preliminary results. Acad. Radiol. (2019). https://doi.org/10.1016/j.acra.2018.12.025

    Article  Google Scholar 

  19. Sanei, M.T., Kimia, F., Mehrnahad, M., et al.: Accuracy of diffusion-weighted imaging-magnetic resonance in differentiating functional from non-functional pituitary macro-adenoma and classification of tumor consistency. Neuroradiol. J. 32, 74–85 (2018). https://doi.org/10.1177/1971400918809825

    Article  Google Scholar 

  20. Yushkevich, P.A., Piven, J., Hazlett, H.C., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  Google Scholar 

  21. Van Griethuysen, J.J., Fedorov, A., Parmar, C., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  22. Leijenaar, R.T., Nalbantov, G., Carvalho, S., et al.: The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci. Rep. 5, 11075 (2015). https://doi.org/10.1038/srep11075

    Article  Google Scholar 

  23. Mannarino, T., Assante, R., Ricciardi, C., et al.: Head-to-head comparison of diagnostic accuracy of stress-only myocardial perfusion imaging with conventional and cadmium-zinc telluride single-photon emission computed tomography in women with suspected coronary artery disease. J. Nucl. Cardiol. (2019). https://doi.org/10.1007/s12350-019-01789-7

    Article  Google Scholar 

  24. Romeo, V., Ricciardi, C., Cuocolo, R., et al.: Machine learning analysis of MRI-derived texture features to predict placenta accreta spectrum in patients with placenta previa. Magnetic Resonance Imaging (2019). https://doi.org/10.1016/j.mri.2019.05.017. ISSN 0730-725X

  25. Quinlan, J.R.: Bagging, boosting, and C4. 5. In: AAAI/IAAI, vol. 1, pp. 725–730, August 1996

    Google Scholar 

  26. le Cessie, S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Appl. Stat. 41(1), 191–201 (1991)

    Article  Google Scholar 

  27. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1992)

    Google Scholar 

  28. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man, Cybern. 4, 580–585 (1985)

    Article  Google Scholar 

  29. Chawla, N., Bowyer, K., Hall, L., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. (JAIR) 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  30. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricciardi Carlo .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflict of interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carlo, R. et al. (2020). Distinguishing Functional from Non-functional Pituitary Macroadenomas with a Machine Learning Analysis. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_221

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_221

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics