Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

  • 377 Accesses

Abstract

Upper-limb exoskeletons provide high-intensity, repetitive, task-specific, interactive and individualized training, making effective use of neuroplasticity for functional recovery in neurological patients. Most exoskeletons have robot axes aligned with the anatomical axes of the subject and provide direct control of individual joints. Recently, novel mechanical structures and actuation mechanisms have been proposed, but still result in bulky and heavy exoskeletons, limiting their applicability into clinical practice. Technological efforts are needed to promote light and wearable exoskeletons that implement active-assistive controllers, providing “assisted-as-needed” rehabilitation therapy, towards patient’s motivation and self-esteem. An overview of upper-limb exoskeletons, including mechanical design and control algorithms, will be provided. Special focus will be put on the current evidence about the efficacy of wearable robotic technologies on motor recovery and about other therapies that can be combined with exoskeletons to improve their therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosini, E., et al.: A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. J. Electromyogr. Kinesiol. 24(2), 307–317 (2014). Official Journal of the International Society of Electrophysiological Kinesiology

    Article  Google Scholar 

  2. Basteris, A., et al.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. NeuroEng. Rehabil. 11(1), 111 (2014)

    Article  Google Scholar 

  3. Bertani, R., et al.: Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol. Sci. 38(9), 1561–1569 (2017)

    Article  Google Scholar 

  4. Calanca, A., et al.: A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans. Mechatron. 21(2), 613–624 (2016)

    Article  Google Scholar 

  5. Chang, W.H., Kim, Y.-H.: Robot-assisted therapy in stroke rehabilitation. J. Stroke 15(3), 174–181 (2013)

    Article  Google Scholar 

  6. Gandolla, M., et al.: The neural correlates of long-term carryover following functional electrical stimulation for stroke. Neural Plast. 2016, 1–13 (2016)

    Article  Google Scholar 

  7. Grimm, F., et al.: Closed-loop task difficulty adaptation during virtual reality reach-to-grasp training assisted with an exoskeleton for stroke rehabilitation. Front. Neurosci. 10, 518 (2016)

    Google Scholar 

  8. Howlett, O.A., et al.: Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 96(5), 934–943 (2015)

    Article  Google Scholar 

  9. Immick, N., et al.: Hybrid robotic system for arm training after stroke: preliminary results of a randomized controlled trial. In: International Conference on NeuroRehabilitation, pp. 94–97 (2019)

    Google Scholar 

  10. Islam, M.R., et al.: A brief review on robotic exoskeletons for upper extremity rehabilitation to find the gap between research prototype and commercial type. Adv. Robot. Autom. 06(03), 1–12 (2018)

    Google Scholar 

  11. Kim, B., Deshpande, A.D.: An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. Int. J. Robot. Res. 36(4), 414–435 (2017)

    Article  Google Scholar 

  12. Krebs, H.I., et al.: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 327–335 (2007)

    Article  Google Scholar 

  13. Langhorne, P., et al.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)

    Article  Google Scholar 

  14. Laver, K.E., et al.: Virtual reality for stroke rehabilitation. In: Laver, K.E. (ed.) Cochrane Database of Systematic Reviews. Wiley, Chichester (2011)

    Google Scholar 

  15. Lawrence, E.S., et al.: Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 32(6), 1279–1284 (2001)

    Article  Google Scholar 

  16. Lo, H.S., Xie, S.Q.: Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med. Eng. Phys. 34(3), 261–268 (2012)

    Article  Google Scholar 

  17. Mazzoleni, S., et al.: Combining upper limb robotic rehabilitation with other therapeutic approaches after stroke: current status, rationale, and challenges. BioMed Res. Int. 2017, 1–11 (2017)

    Article  Google Scholar 

  18. Meadmore, K.L., et al.: Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. J. Neuroeng. Rehabil. 9, 32 (2012)

    Article  Google Scholar 

  19. Mehrholz, J., et al.: Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. (11), CD006876 (2015)

    Google Scholar 

  20. Nef, T., et al.: ARMin III - arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)

    Article  Google Scholar 

  21. Pedrocchi, A., et al.: MUNDUS project: Multimodal Neuroprosthesis for Daily Upper limb Support. J. NeuroEng. Rehabil. 10(1), 66 (2013)

    Article  Google Scholar 

  22. Pirondini, E., et al.: Evaluation of the effects of the arm light exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. J. NeuroEng. Rehabil. 13(1), 1–21 (2016)

    Article  Google Scholar 

  23. Proietti, T., et al.: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016)

    Article  Google Scholar 

  24. Qian, Q., et al.: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Front. Neurol. 8, 447 (2017)

    Article  Google Scholar 

  25. Rong, W., et al.: A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. J. NeuroEng. Rehabil. 14(1), 34 (2017)

    Article  Google Scholar 

  26. Sensinger, J.W., Weir, R.F.F.: Improvements to series elastic actuators. In: Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2006 (2007)

    Google Scholar 

  27. Stienen, A.H.A., et al.: Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Rob. 25(3), 628–633 (2009)

    Article  Google Scholar 

  28. Veerbeek, J.M., et al.: Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil. Neural Repair 31(2), 107–121 (2017)

    Article  Google Scholar 

  29. Zhang, C., et al.: Robotic approaches for the rehabilitation of upper limb recovery after stroke. Int. J. Rehabil. Res. 40(1), 19–28 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Ambrosini .

Editor information

Editors and Affiliations

Ethics declarations

The Authors declare that there is no conflict of interest regarding the publication of this contribution.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ambrosini, E., Dalla Gasperina, S., Gandolla, M., Pedrocchi, A. (2020). Upper-Limb Exoskeletons for Stroke Rehabilitation. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_209

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_209

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics