Skip to main content

Connecting Pathway Errors in the Insulin Signaling Cascade: The Molecular Link to Inflammation, Obesity, Cancer, and Alzheimer’s Disease

  • Chapter
  • First Online:
Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Insulin resistance is characterized by molecular defects in the insulin-signaling pathway. Such defects disrupt cellular homeostasis and impede normal biochemical response. The mechanistic obstruction of biomolecules in the pathway leads to a number of health consequences that are grouped into a cluster of illnesses widely known as “metabolic syndrome” which creates abnormal health states of chronic condition like heart disease, diabetes, cancer, and Alzheimer’s disease, a type of dementia also known as “diabetes type 3,” which all have a profound effect and greatly impact the overall health. The interplay of major pathways leading to glucose homeostasis and energy production is explored. Molecular docking is utilized to understand possible intermolecular forces between key molecules in the signaling pathways. Emphasis is placed on the major components of insulin signaling, especially on how individual protein molecules of the pathways are interacting with each other in the signaling cascade. The relationship between the respective diseases and the signaling cascades is explored. Molecular links in the insulin pathway will be explored in detail, in order to correlate major mechanisms that lead to insulin resistance and related pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4EBP1:

Eukaryotic translation initiation factor 4E-binding protein 1

AD:

Alzheimer’s disease

Akt:

Protein kinase B (PKB)

APP:

Amyloid precursor protein

APS:

Adaptor protein with pleckstrin homology

AS160:

TBC1 domain family member 4 (TBC1D4)

Aβ:

Amyloid beta

BAD:

BCL2 associated agonist of cell death

C3G:

Cyanidin 3-glucoside

CAP:

Cbl-associated protein

Cbl:

Cas-Br-M ecotropic retroviral transforming sequence homologue

CrK:

Adapter molecule CrK (proto-oncogene c-Crk)

elk1:

ETS like-1 protein Elk-1

eNOS:

Endothelial NO synthase

ERK:

Extracellular regulated kinase

ET-1:

Endothelin-1

FFAs:

Free fatty acids

FOXO:

Forkhead box O

GAP:

GTPase-activating protein

GEF:

Guanine nucleotide exchange factor

GLUT4:

Glucose transporter type 4 (SLC2A4)

GRB10:

Growth factor receptor-bound protein 10; insulin receptor-binding protein Grb-IR

Grb2:

Growth factor receptor-bound protein 2

GSK-3:

Glycogen synthase kinase 3

GSK-3β kinase:

Glycogen synthase kinase 3 beta

IDE:

Insulin degrading enzyme

IKK:

IκB kinase

IKK-β:

IκB kinase-β (inhibitor of nuclear transcription factor kappa-B kinase subunit beta)

IR:

Insulin receptor

IRS:

Insulin receptor substrate

JNK:

c-jun N-terminal kinases

L803-mts:

Selective peptide inhibitor of glycogen synthase kinase-3 (GSK-3)

MAPK:

Mitogen-activated protein kinase

MAP2K:

Mitogen-activated protein kinase kinase

MAP3K:

Mitogen-activated protein kinase kinase kinase

MCP-1:

Monocyte chemoattractant protein-1

MEK:

MAPK and ERK kinases

MIP-1:

Macrophage inflammatory protein 1

Mnk:

Mitogen-activated protein kinase interacting protein kinase

mTOR:

Mammalian target of rapamycin

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NFT:

Neurofibrillary tangles

NO:

Nitric oxide

PDK-1:

Pyruvate dehydrogenase lipoamide kinase isozyme 1

PI3K:

Phosphoinositide 3-kinase (phosphatidylinositol 3 kinase)

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PIP3:

Phosphatidylinositol-trisphosphate

PKC:

Protein kinase C

POS:

Polycystic ovarian syndrome

PPAR-y:

Thiazolidinedione family of Insulin-sensitizing peroxisome proliferator-activated receptor gamma

PTEN:

Phosphatase and tensin homolog

PTP1B:

Protein-tyrosine phosphatase 1B

Raf:

Raf kinase family member (rapidly accelerated fibrosarcoma); RAF proto-oncogene serine/threonine-protein kinase

Ras:

Ras GTPase

ROS:

Reactive oxygen species

RSK:

Ribosomal S6 kinase

RTK:

Receptor tyrosine kinase

S6K:

Ribosomal protein S6 kinase beta-1

Shc:

Src-homology-2-containing protein

SHP2:

Tyrosyl phosphatase

SOS:

Guanyl nucleotide exchange factor son-of-sevenless

STZ:

Streptozotocin

T2DM:

Type 2 diabetes mellitus

TC10:

Ras homologue gene family, member Q (ARHQ)

TLR:

Toll-like receptor

TLR4:

Toll-like receptor 4

TNF:

Tumor necrosis factor

TNF-α:

Tumor necrosis factor-α

TSC:

Tuberous sclerosis 1

TZD:

Thiazolidinediones

References

  1. Hirabara, S.M., Gorjao, R., Vinolo, M.A., et al.: Molecular targets related to inflammation and insulin resistance and potential intervention. J. Biomed. Biotechnol. 379024, 1–16 (2012)

    Article  Google Scholar 

  2. Zhang, J.J., Liu, F.: Tissue-specific insulin in the regulation of metabolism and aging. IUBMB Life 66(7), 485–495 (2014)

    Article  Google Scholar 

  3. He, H.J., Zong, Y., Bernier, M., et al.: Sensing the insulin signaling pathway with an antibody array. Proteomics Clin. Appl. 3(12), 1440–1450 (2009)

    Google Scholar 

  4. Abdul-Ghani, M.A., DeFronzo, R.A.: Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 476279, 1–19 (2010)

    Article  Google Scholar 

  5. Chakraborty, C.: Biochemical and molecular basis of insulin resistance. Curr. Protein Pept. Sci. 7(2), 113–121 (2006)

    Article  Google Scholar 

  6. Pessin, J.E., Saltiel, A.R.: Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Investig. 106(2), 165–169 (2000)

    Article  Google Scholar 

  7. Guo, S.: Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models to disease mechanisms. J. Endocrinol. 220(2), T1–T23 (2014)

    Article  MathSciNet  Google Scholar 

  8. Govindarajan, G., Gill, H., Rovetto, M., et al.: What is insulin resistance? Heart Metab. 30, 30–34 (2006)

    Google Scholar 

  9. Roberts, C.K., Hevener, A.L., Barnard, J.: Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr. Physiol. 3(1), 1–58 (2013)

    Google Scholar 

  10. Moller, D.E., Kaufman, K.D.: Metabolic syndrome: a clinical and molecular perspective. Annu. Rev. Med. 56, 45–62 (2005)

    Article  Google Scholar 

  11. Saltiel, A.R., Pessin, J.E.: Insulin signaling pathways in time and space. Trends Cell Biol. 12(2), 65–71 (2002)

    Article  Google Scholar 

  12. Sesti, G.: Pathophysilogy of insulin resistance. Best Pract. Res. Clin. Endocrinol. Metab. 20(4), 665–679 (2006)

    Article  Google Scholar 

  13. Aganović, I., Dušek, T.: Pathophysiology of metabolic syndrome. Department of Internal Medicine. Division of Endocrinology, University Hospital Center Zagreb, Croatia. EJIFCC 18(1), 3–6 (2007)

    Google Scholar 

  14. Muniyappa, R., Montagnani, M., Koh, K.K., et al.: Cardiovascular actions of insulin. Endocr. Rev. 28(5), 463–491 (2007)

    Article  Google Scholar 

  15. Godsland, I.F.: Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin. Sci. 118, 315–332 (2010)

    Article  Google Scholar 

  16. Lizcano, J.M., Alessi, D.R.: The insulin signaling pathway. Curr. Biol. 12(7), R236–R238 (2002)

    Article  Google Scholar 

  17. Mlinar, B., Marc, J., Janez, A., et al.: Molecular mechanisms of insulin resistance and associated diseases. Clin. Chim. Acta 475, 20–35 (2007)

    Article  Google Scholar 

  18. Mendonça, F.M., de Sousa, F.R., Barbosa, A.L.: Metabolic syndrome and risk of cancer: which link? Metabolism 64(2), 182–189 (2015)

    Article  Google Scholar 

  19. Pothiwala, P., Jain, S.K., Yaturu, S.: Metabolic syndrome and cancer. Metab. Syndr. Relat. Disord. 7(4), 279–288 (2009)

    Article  Google Scholar 

  20. Dineley, K.T., Jahrling, J.B., Denner, L.: Insulin resistance in Alzheimer’s disease. Neurobiol. Dis. 72PA, 92–103 (2014). (PMC. Web., 20 June 2018)

    Article  Google Scholar 

  21. Ribe, E.M., Lovestone, S.: Insulin signaling in Alzheimer’s disease and diabetes: from epidemiology to molecular links. J. Intern. Med. 280(5), 430–442 (2016)

    Article  Google Scholar 

  22. Verdile, G., Keane, K.N., Cruzat, V.F.: Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediat. Inflamm. 105828, 1–17 (2015)

    Article  Google Scholar 

  23. Hotamisligil, G.S.: Inflammation and metabolic disorders. Nat. Publ. Group 444, 860–867 (2006)

    Google Scholar 

  24. Petersen, K.F., Shulman, G.I.: Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am. J. Cardiol. 90(5A), 11G–18G (2002)

    Article  Google Scholar 

  25. Reaven, G.M.: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988)

    Article  Google Scholar 

  26. Cao, H.: Adipocytokines in obesity and metabolic disease. J. Endocrinol. 220(2), T47–T59 (2014)

    Article  Google Scholar 

  27. Wilcox, G.: Insulin and insulin resistance. Clin. Biochem. 26(2), 19–39 (2005)

    Google Scholar 

  28. Stanley, M., Macauley, S.L., Holtzman, D.M.: Changes in insulin and insulin signaling in alzheimer’s disease: cause or consequence? J. Exp. Med. 213(8), 1375–1385 (2016)

    Article  Google Scholar 

  29. Perez, M.J., Quintanilla, R.A.: Therapeutic actions of the thiazolidinediones in Alzheimer’s disease. PPAR Res. J. 957248, 1–8 (2015)

    Google Scholar 

  30. Bedse, G., Domenico, F.D., Serviddio, G., et al.: Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front. Neurosci. 9(204), 1–13 (2015)

    Google Scholar 

  31. Chang, L., Chiang, S.H., Saltiel, A.R.: Insulin signaling and the regulation of glucose transport. Mol. Med. 10(7–12), 65–71 (2004)

    Article  Google Scholar 

  32. Serrano, R., Villar, M., Gallardo, N.: The effect of aging on insulin signalling pathway is tissue dependent: central role of adipose tissue in the insulin resistance of aging. Mech. Ageing Dev. 130(3), 189–197 (2009)

    Article  Google Scholar 

  33. Petersen, K.F., Shulman, G.I.: Etiology of insulin resistance. Am. J. Med. 119(5A), 10S–16S (2006)

    Article  Google Scholar 

  34. Hinke, S.A.: Epac2: a molecular target for sulfonylurea-induced insulin release. Science Signaling 2(85), e54 (2009). (pp. 1–4)

    Article  Google Scholar 

  35. Thareja, S., Aggarwal, S., Bhardwaj, T.R., Kumar, M.: Protein tyrosine phosphatase 1b inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Med. Res. Rev. 32(3), 459–517 (2010)

    Article  Google Scholar 

  36. Hildreth, K.L., Van Pelt, R.E., Schwartz, R.S.: Obesity, insulin resistance, and Alzheimer’s disease. Obesity (Silver Spring, MD) 20(8), 1549–1557 (2012)

    Article  Google Scholar 

  37. Wang, Q., Jin, T.: The role of insulin signaling in the development of β-cell dysfunction and diabetes. Islets 1(2), 95–101 (2009)

    Article  Google Scholar 

  38. Li, C., Zhang, B.B.: Insulin signaling and action: glucose, lipids, protein. In: De Groot, L.J., Chrousos, G., Dungan, K., et al. (eds.) Endotext [Internet], pp. 2000–2009. MDText.com, Inc., South Dartmouth (MA) (2007)

    Google Scholar 

  39. McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Montalto, G.: Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 3(9), 954–987 (2012)

    Article  Google Scholar 

  40. Liu, P., Cheng, H., Roberts, T.M., Zhao, J.J.: Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat. Rev. Drug Discovery 8(8), 627–644 (2009)

    Article  Google Scholar 

  41. Boucher, J., Kleinridders, A., Kahn, R.: Insulin receptor signaling in normal and insulin-resistant states Cold Spring Harb Perspect. Biology 6(1), pii.a009191 (2014)

    Google Scholar 

  42. Ravichandran, K.S.: Signaling via Shc family adapter proteins. Oncogene 20(44), 6322–6330 (2001)

    Article  Google Scholar 

  43. Braun, S., Bitton-Worms, K., LeRoith, D.: The link between the metabolic syndrome and cancer. Int. J. Biol. Sci. 7(7), 1003–1015 (2011)

    Article  Google Scholar 

  44. Berg, J.M., Tymoczko, J.L., Stryer, L.: Some receptors dimerize in response to ligand binding and signal by cross-phosphorylation. In: Biochemistry, 5th edn. W. H. Freeman, New York (2002) (Section 15.4)

    Google Scholar 

  45. Rhodes, C.J., White, M.F., Leahy, J.L., Kahn, S.E.: Direct autocrine action of insulin on b-cells: does it make physiological sense? Diabetes 62(7), 2157–2163 (2013)

    Article  Google Scholar 

  46. Copps, K.D., White, M.F.: Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55(10), 2565–2582 (2012)

    Article  Google Scholar 

  47. Vats, R.K., Kumar, V., Kothari, A., Mital, A., Ramachandran, U.: Emerging targets for diabetes. Curr. Sci. 88(2), 241–249 (2005)

    Google Scholar 

  48. McGonnell, I.M., Grigoriadis, A.E., Lam, E.W.F., Price, J.S., Sunters, A.: A specific role for phosphoinositide 3-kinase and Akt in osteoblasts? Front. Endocrinol. 3(88), 1–8 (2012)

    Google Scholar 

  49. Wu, W.I., Voegtli, W.C., Sturgis, H.L., Dizon, F.P., Vigers, G.P.: Crystal structure of human Akt1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS ONE 5, 12913 (2010)

    Article  Google Scholar 

  50. Bertrand, J.A., Thieffine, S., Vulpetti, A., Cristiani, C., Valsasina, B.: Structural characterization of the Gsk-3 beta active site using selective and non-selective ATP-mimetic inhibitors. J. Mol. Biol 333, 393–407 (2003)

    Article  Google Scholar 

  51. Reddy, P.H.: Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: implications for synaptic dysfunction and neuronal damage. Biochem. Biophys. Acta. 1832(12), 1913–1921 (2013)

    Google Scholar 

  52. Hooper, C., Killick, R., Lovestone, S.: The GSK-3 hypothesis of Alzheimer’s disease. J. Neurochem. 9(104), 1433–1439 (2008)

    Article  Google Scholar 

  53. Eldar-Finkelman, H., Martinez, A.: GSK-3 inhibitors: preclinical and clinical focus on CNS. Front. Mol. Neurosci. 4(2011), 32 (2013). (PMC. Web., 20 June 2018)

    Google Scholar 

  54. Chen, R., Li, L., Weng, Z.: ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1), 80–87 (2003)

    Article  Google Scholar 

  55. Kahn, B.B.: Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. J. Clin. Investig. 89(5), 1367–1374 (1992)

    Article  Google Scholar 

  56. Shulman, G.I.: Cellular mechanisms of insulin resistance. J. Clin. Investig. 106(2), 171–176 (2000)

    Article  Google Scholar 

  57. Deng, Y., Li, B., Liu, Y., Iqbal, K., Grundke-Iqbal, I., Gong, C.X.: Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain. Am. J. Pathol. 175(5), 2089–2098 (2009)

    Article  Google Scholar 

  58. Wu, J., Yan, L.J.: Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic Β cell glucotoxicity. Diabetes Metab. Syndr. Obes. Targets Ther. 8, 181–188 (2015). (PMC. Web., 20 June 2018)

    Google Scholar 

  59. Haag, M., Dippenaar, N.G.: Dietary fats, fatty acids and insulin resistance: short review of a multifaceted connection. Med. Sci. Monit. 11(12), RA359–RA367 (2005)

    Google Scholar 

  60. Castellano, E., Downward, J.: RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3), 261–274 (2011)

    Article  Google Scholar 

  61. Santarpia, L., Lippman, S.L., El-Naggar, A.K.: Targeting the mitogen-activated protein kinase RAS-RAF signaling pathway in cancer therapy. Expert. Opin. Ther. Targets 16(1), 103–119 (2012). (PMC. Web. 20 June 2018)

    Article  Google Scholar 

  62. Molina, J.R., Adjei, A.A.: The Ras/Raf/MAPK pathway. J. Thorac. Oncol. 1(1), 7–9 (2006)

    Article  Google Scholar 

  63. Ramalingam, L., Oh, E., Thurmond, D.C.: Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates. Cell Mol. Life Sci. 70(16), 2815–2834 (2013)

    Article  Google Scholar 

  64. Kiempner, S.J., Myers, A.P., Cantley, L.C.: What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov. 3(12), 1345–1354 (2013)

    Article  Google Scholar 

  65. Belfiore, A., Malaguarnera, R.: Insulin receptor and cancer. Endocr. Relat. Cancer 18, R125–R147 (2011)

    Article  Google Scholar 

  66. Xie J, Wang X, Proud CG mTOR inhibitors in cancer therapy. F1000 Res., 5 (2016) (F1000 Fac. Rev. 2078. PMC. Web., 20 June 2018)

    Article  Google Scholar 

  67. Chen, J., Zhao, K.N., Li, R., Shao, R., Chen, C.: Activation of PI3K/Akt/mTOR pathway and dual inhibitors of PI3K and mTOR in endometrial cancer. Curr. Med. Chem. 21(26), 3070–3080 (2014)

    Article  Google Scholar 

  68. Dhe-Paganon, S., Ottinger, E.A.: Crystal structure of the pleckstrin homology-phosphotyrosine binding (PH-PTB) targeting region of insulin receptor substrate 1. Proc. Natl. Acad. Sci. U.S.A. 96, 8378–8383 (1999)

    Article  Google Scholar 

  69. Cheng, H., Li, C., Bailey, S., Baxi, S.M., Goulet, L., Guo, L.: Catalytic unit of PI3Kg in complex with PI3K/mTOR dual inhibitor PF-04979064. ACS Med Chem Lett 4, 91–97 (2013)

    Article  Google Scholar 

  70. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13), 1605–1612 (2004)

    Article  Google Scholar 

  71. Liu, J., Visser-Grieve, S., Boudreau, J., Yeung, B., Lo, S., Chamberlain, G.: Insulin activates the insulin receptor to downregulate the PTEN tumour suppressor. Oncogene 33, 3878–3885 (2014)

    Article  Google Scholar 

  72. Bollig-Fischer, A., Dewey, T.G., Ethier, S.P.: Oncogene activation induces metabolic transformation resulting in insulin-independence in human breast cancer cells. PLoS ONE 6(3), e17959 (2011)

    Article  Google Scholar 

  73. Serra, V., Scaltriti, M., Prudkin, L., Eichhorn, P.J.A., Ibrahim, Y.H., Chandarlapaty, S., Markman, B., Rodriguez, O., Guzman, M., Rodriguez, S., Gili, M., Russillo, M., Parra, J.L., Singh, S., Arribas, J., Rosen, N., Baselga, J.: PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30, 2547–2557 (2011)

    Article  Google Scholar 

  74. Mutlu, M., Saatci, Ö., Ansari, S.A., Yurdusev, E., Shehwana, H., Konu, Ö., Raza, U., Şahin, Ö.: MiR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Sci. Rep. 6, 32541 (2016)

    Article  Google Scholar 

  75. Kim, Y.J., Jahan, N., Bahk, Y.Y.: Biochemistry and structure of phosphoinositide phosphatases. BMB Rep. 46(1), 1–8 (2013)

    Article  Google Scholar 

  76. Chaikuad, A., Tacconi, E.M.C., Zimmer, J., Liang, Y., Gray, N.S., Tarsounas, M., Knapp, S.: A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat. Chem. Biol. 10, 853–860 (2014)

    Article  Google Scholar 

  77. Tang, X., Powelka, A.M., Soriano, N.A., Czech, M.P., Guiherme, A.: PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-Kinase/Akt Pathway in 3T3-L1 adipocytes. J. Biol. Chem. 280(23), 22523–22529 (2005)

    Article  Google Scholar 

  78. Mardilovich, K., Pankratz, S.L., Shaw, L.M.: Expression and function of the insulin receptor substrate proteins in cancer. J. Cell Commun. Signal. 7(14), 1–15 (2009)

    Google Scholar 

  79. Tanti, J.F., Gremeaux, T., van Obberghen, E., Le Marchand-Brustel, Y.: Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J. Biol. Chem. 269(8), 6051–6057 (1994)

    Google Scholar 

  80. Ye, J.: Mechanisms of insulin resistance in obesity. Front. Med. 7(1), 14–24 (2013)

    Article  Google Scholar 

  81. Du, Y., Wei, T.: Inputs and outputs of insulin receptor. Protein Cell 5(3), 203–213 (2014)

    Article  MathSciNet  Google Scholar 

  82. Bastard, J., Maachi, M., Lagathu, C., Kim, M.J., Caron, M.: Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 17(1), 4–12 (2006)

    Google Scholar 

  83. Boden, G.: Obesity and free fatty acids. Endocrinol. MetabIsm. Clin. N. Am. 37(3), 635–646 (2008)

    Article  MathSciNet  Google Scholar 

  84. Samuel, V.T., Petersen, K.F., Shulman, G.I.: Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375(9733), 2267–2277 (2010)

    Article  Google Scholar 

  85. Jung, U.J., Choi, M.S.: Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15(4), 6184–6223 (2014)

    Article  MathSciNet  Google Scholar 

  86. Hajduch, E., Litherland, G.J., Hundal, H.S.: Protein kinase B (PKB/Akt)—a key regulator of glucose transport? FEBS Lett. 492, 199–203 (2001)

    Article  Google Scholar 

  87. Lee, H.K., Kumar, P., Fu, Q., Rosen, K.M., Querfurth, H.W.: The insulin/Akt signaling pathway is targeted by intracellular B-amyloid. Mol. Biol. Cell 20(5), 1533–1544 (2009)

    Article  Google Scholar 

  88. Sosa, H.M., Keyes, R., Stieglitz, K.A.: Structural analysis of relevant drug targets for Alzheimer’s disease: novel approaches to drug development. Curr. Bioact. Compd. 13(2), 90–100 (2017)

    Article  Google Scholar 

  89. Tripathy, D., Mohanty, P., Dhindsa, S., Ghanim, H.: Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 52, 2882–2887 (2003)

    Article  Google Scholar 

  90. Pergola, G.D., Silvestris, F.: Obesity as a major risk factor for cancer. J. Obes. 2013, 1–11 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Stieglitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sosa, Y.J., Sosa, H.M., Epiter-Smith, V.A., Topaz, G.R., Stieglitz, K.A. (2020). Connecting Pathway Errors in the Insulin Signaling Cascade: The Molecular Link to Inflammation, Obesity, Cancer, and Alzheimer’s Disease. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics