Skip to main content

Advertisement

Log in

Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

aP2:

Adipocyte protein 2

APS:

Adapter protein with pleckstrin homology and Src homology domain

Arp2/3:

Actin-related protein 2/3

AS160:

Akt substrate of 160 kDa

BAIRKO:

Brown adipocyte-specific insulin receptor knockout

CAP:

c-Cbl-associated protein

Cav-1:

Caveolin-1

Cav-3:

Caveolin-3

CHO:

Chinese hamster ovary cells

CIP4:

Cdc42-interacting protein

CrkII:

CT10-related kinase

Erk1/2:

Extracellular signal regulated kinases 1 or 2

FIRKO:

Fat-specific muscle insulin receptor knockout

FOXO:

Forkhead box protein O-1

Gab-1:

Grb2-associated binding protein

GIRKI:

GLUT4-expressing tissues insulin receptor knock-in mouse

GIRKO:

GLUT4-expressing tissues insulin receptor knockout

GLUT4:

Glucose transporter 4

Grb2:

Growth factor receptor bound 2

Grb10:

Growth factor receptor bound 10

HR:

Hybrid receptor

IGF:

Insulin-like growth factor

IGFR:

Insulin-like growth factor receptor

IR:

Insulin receptor

IRS-1/2:

Insulin receptor substrate-1 or 2

Jak-1:

Janus kinase-1

L1:

Ligand binding domain 1

L2:

Ligand binding domain 2

LAR:

Leukocyte antigen related

LRP:

Lipoprotein receptor-related protein

MAPK:

Mitogen-activated protein kinase

MIRKO:

Muscle-specific muscle insulin receptor knockout

MD1/2:

Mytonic dystrophy

mTOR:

Mammalian target of rapamycin

N-Wasp:

Neuronal Wiskott–Aldrich syndrome protein

PC-1:

Plasma cell membrane glycoprotein-1

PDK-1:

Phosphoinsitide-dependent protein kinase 1

PH:

Pleckstrin homology

PI3-K:

Phosphoinositide 3-kinase

PIP3:

Phosphatidylinositol (3, 4, 5)-triphosphate

PKC:

Protein kinase C

PM:

Plasma membrane

PP63:

Phosphoprotein of 63 kDa

PTB:

Phosphotyrosine binding domain

PTP1B:

Protein tyrosine phosphatase 1B

p21Ras :

Rat sarcoma protein (Ras)

SAIN:

Shc and IRS NPXY binding domain

SERCA:

Sarcoplasmic/endoplasmic reticulum calcium ATPase

SH2:

Src homology 2

Shc:

Src homology-containing protein

SHP:

SH2-containing tyrosine phosphatase

SirT:

Sirtuins

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment receptor

SOCS-3:

Suppressor of cytokine signaling 3

SOS:

Son of Sevenless

STAT:

Signal transducer and activator of transcription

T2D:

Type 2 diabetes

t-SNARE:

Target membrane SNARE protein

Tyk-2:

Tyrosine kinase-2

VAMP2:

Vesicle-associated membrane SNARE protein-2

References

  1. Cuatrecasas P (1971) Insulin–receptor interactions in adipose tissue cells: direct measurement and properties. Proc Natl Acad Sci USA 68:1264–1268

    Article  PubMed  CAS  Google Scholar 

  2. Kono T, Barham FW (1971) The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsin-treated fat cells. J Biol Chem 246:6210–6216

    PubMed  CAS  Google Scholar 

  3. Freychet P, Roth J, Neville DM Jr (1971) Insulin receptors in the liver: specific binding of (125 I) insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci USA 68:1833–1837

    Article  CAS  PubMed  Google Scholar 

  4. Kasuga M, Karlsson FA, Kahn CR (1982) Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215:185–187

    Article  PubMed  CAS  Google Scholar 

  5. Hedo JA, Kahn CR, Hayashi M, Yamada KM, Kasuga M (1983) Biosynthesis and glycosylation of the insulin receptor. Evidence for a single polypeptide precursor of the two major subunits. J Biol Chem 258:10020–10026

    PubMed  CAS  Google Scholar 

  6. Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L et al (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40:747–758

    Article  PubMed  CAS  Google Scholar 

  7. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM et al (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761

    Article  PubMed  CAS  Google Scholar 

  8. Roth RA, Cassel DJ (1983) Insulin receptor: evidence that it is a protein kinase. Science 219:299–301

    Article  PubMed  CAS  Google Scholar 

  9. Petruzzelli LM, Ganguly S, Smith CJ, Cobb MH, Rubin CS et al (1982) Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta. Proc Natl Acad Sci USA 79:6792–6796

    Article  PubMed  CAS  Google Scholar 

  10. Van Obberghen E, Kowalski A (1982) Phosphorylation of the hepatic insulin receptor: stimulating effect of insulin on intact cells and in a cell-free system. FEBS Lett 143:179–182

    Article  PubMed  Google Scholar 

  11. Haring HU, Kasuga M, Kahn CR (1982) Insulin receptor phosphorylation in intact adipocytes and in a cell-free system. Biochem Biophys Res Commun 108:1538–1545

    Article  PubMed  CAS  Google Scholar 

  12. Rosen OM, Herrera R, Olowe Y, Petruzzelli LM, Cobb MH (1983) Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc Natl Acad Sci USA 80:3237–3240

    Article  PubMed  CAS  Google Scholar 

  13. Yu KT, Czech MP (1984) Tyrosine phosphorylation of the insulin receptor beta subunit activates the receptor-associated tyrosine kinase activity. J Biol Chem 259:5277–5286

    PubMed  CAS  Google Scholar 

  14. Herrera R, Rosen OM (1986) Autophosphorylation of the insulin receptor in vitro. Designation of phosphorylation sites and correlation with receptor kinase activation. J Biol Chem 261:11980–11985

    PubMed  CAS  Google Scholar 

  15. Kwok YC, Nemenoff RA, Powers AC, Avruch J (1986) Kinetic properties of the insulin receptor tyrosine protein kinase: activation through an insulin-stimulated tyrosine-specific, intramolecular autophosphorylation. Arch Biochem Biophys 244:102–113

    Article  PubMed  CAS  Google Scholar 

  16. Shia MA, Pilch PF (1983) The beta subunit of the insulin receptor is an insulin-activated protein kinase. Biochemistry 22:717–721

    Article  PubMed  CAS  Google Scholar 

  17. Ronnett GV, Knutson P, Kohanski RA, Simpson TL, Lane MD (1984) Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocytes. J Biol Chem 259:4566–4575

    PubMed  CAS  Google Scholar 

  18. Seino S, Seino M, Nishi S, Bell GI (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci USA 86:114–118

    Article  PubMed  CAS  Google Scholar 

  19. Hubbard SR, Wei L, Ellis L, Hendrickson WA (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746–754

    Article  PubMed  CAS  Google Scholar 

  20. Petruzzelli L, Herrera R, Arenas-Garcia R, Fernandez R, Birnbaum MJ et al (1986) Isolation of a Drosophila genomic sequence homologous to the kinase domain of the human insulin receptor and detection of the phosphorylated Drosophila receptor with an anti-peptide antibody. Proc Natl Acad Sci USA 83:4710–4714

    Article  PubMed  CAS  Google Scholar 

  21. White MF, Maron R, Kahn CR (1985) Insulin rapidly stimulates tyrosine phosphorylation of a mγ-185,000 protein in intact cells. Nature 318:183–186

    Article  PubMed  CAS  Google Scholar 

  22. Rothenberg PL, Lane WS, Karasik A, Backer J, White M et al (1991) Purification and partial sequence analysis of pp 185, the major cellular substrate of the insulin receptor tyrosine kinase. J Biol Chem 266:8302–8311

    PubMed  CAS  Google Scholar 

  23. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E et al (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    Article  PubMed  CAS  Google Scholar 

  24. Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    Article  PubMed  CAS  Google Scholar 

  25. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    Article  PubMed  CAS  Google Scholar 

  26. Seino S, Seino M, Bell GI (1990) Human insulin-receptor gene. Diabetes 39:129–133

    Article  PubMed  CAS  Google Scholar 

  27. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S et al (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112

    Article  PubMed  CAS  Google Scholar 

  28. Yang-Feng TL, Francke U, Ullrich A (1985) Gene for human insulin receptor: localization to site on chromosome 19 involved in pre-B-cell leukemia. Science 228:728–731

    Article  PubMed  CAS  Google Scholar 

  29. De Meyts P (1994) The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37:S135–S148

    Article  PubMed  Google Scholar 

  30. Schaffer L (1994) A model for insulin binding to the insulin receptor. Eur J Biochem 221:1127–1132

    Article  PubMed  CAS  Google Scholar 

  31. De Meyts P, Whittaker J (2002) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1:769–783

    Article  PubMed  CAS  Google Scholar 

  32. Chan SJ, Nakagawa S, Steiner DF (2007) Complementation analysis demonstrates that insulin cross-links both alpha subunits in a truncated insulin receptor dimer. J Biol Chem 282:13754–13758

    Article  PubMed  CAS  Google Scholar 

  33. Lee J, Pilch PF, Shoelson SE, Scarlata SF (1997) Conformational changes of the insulin receptor upon insulin binding and activation as monitored by fluorescence spectroscopy. Biochemistry 36:2701–2708

    Article  PubMed  CAS  Google Scholar 

  34. Smith BJ, Huang K, Kong G, Chan SJ, Nakagawa S et al (2010) Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci USA 107:6771–6776

    Article  PubMed  CAS  Google Scholar 

  35. Sajid W, Kulahin N, Schluckebier G, Ribel U, Henderson HR et al (2011) Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. J Biol Chem 286:661–673

    Article  PubMed  CAS  Google Scholar 

  36. White MF, Shoelson SE, Keutmann H, Kahn CR (1988) A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin receptor. J Biol Chem 263:2969–2980

    PubMed  CAS  Google Scholar 

  37. Baron V, Kaliman P, Gautier N, Van Obberghen E (1992) The insulin receptor activation process involves localized conformational changes. J Biol Chem 267:23290–23294

    PubMed  CAS  Google Scholar 

  38. Kasuga M, Hedo JA, Yamada KM, Kahn CR (1982) The structure of insulin receptor and its subunits. Evidence for multiple nonreduced forms and a 210,000 possible proreceptor. J Biol Chem 257:10392–10399

    PubMed  CAS  Google Scholar 

  39. Carpentier JL, Fehlmann M, Van Obberghen E, Gorden P, Orci L (1985) Insulin receptor internalization and recycling: mechanism and significance. Biochimie 67:1143–1145

    Article  PubMed  CAS  Google Scholar 

  40. Fagerholm S, Ortegren U, Karlsson M, Ruishalme I, Stralfors P (2009) Rapid insulin-dependent endocytosis of the insulin receptor by caveolae in primary adipocytes. PLoS ONE 4:e5985

    Article  PubMed  CAS  Google Scholar 

  41. Paccaud JP, Siddle K, Carpentier JL (1992) Internalization of the human insulin receptor the insulin-independent pathway. J Biol Chem 267:13101–13106

    PubMed  CAS  Google Scholar 

  42. Smith RM, Cobb MH, Rosen OM, Jarett L (1985) Ultrastructural analysis of the organization and distribution of insulin receptors on the surface of 3T3-L1 adipocytes: rapid microaggregation and migration of occupied receptors. J Cell Physiol 123:167–179

    Article  PubMed  CAS  Google Scholar 

  43. Bailyes EM, Nave BT, Soos MA, Orr SR, Hayward AC et al (1997) Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J 327(Pt 1):209–215

    PubMed  CAS  Google Scholar 

  44. Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H et al (1999) Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 13:1961–1971

    PubMed  CAS  Google Scholar 

  45. Foti M, Porcheron G, Fournier M, Maeder C, Carpentier JL (2007) The neck of caveolae is a distinct plasma membrane subdomain that concentrates insulin receptors in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 104:1242–1247

    Article  PubMed  CAS  Google Scholar 

  46. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  47. Moller DE, Yokata A, Caro JF, Flier JS (1989) Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol Endo 3:1263–1269

    Article  CAS  Google Scholar 

  48. Seino S, Bell GI (1989) Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun 159:312–316

    Article  PubMed  CAS  Google Scholar 

  49. Uhles S, Moede T, Leibiger B, Berggren PO, Leibiger IB (2003) Isoform-specific insulin receptor signaling involves different plasma membrane domains. J Cell Biol 163:1327–1337

    Article  PubMed  CAS  Google Scholar 

  50. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R et al (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 19:3278–3288

    PubMed  CAS  Google Scholar 

  51. Denley A, Bonython ER, Booker GW, Cosgrove LJ, Forbes BE et al (2004) Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Mol Endocrinol 18:2502–2512

    Article  PubMed  CAS  Google Scholar 

  52. Yamaguchi Y, Flier JS, Benecke H, Ransil BJ, Moller DE (1993) Ligand-binding properties of the 2 isoforms of the human insulin receptor. Endocrinology 132:1132–1138

    Article  PubMed  CAS  Google Scholar 

  53. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30:586–623

    Article  PubMed  CAS  Google Scholar 

  54. Goldstein BJ (1992) Protein-tyrosine phosphatases and the regulation of insulin action. J Cell Biochem 48:33–42

    Article  PubMed  CAS  Google Scholar 

  55. Swarup G, Cohen S, Garbers DL (1981) Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatases. J Biol Chem 256:8197–8201

    PubMed  CAS  Google Scholar 

  56. Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C et al (2005) Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 37:863–867

    Article  PubMed  CAS  Google Scholar 

  57. Shao J, Catalano PM, Yamashita H, Ruyter I, Smith S et al (2000) Decreased insulin receptor tyrosine kinase activity and plasma cell membrane glycoprotein-1 overexpression in skeletal muscle from obese women with gestational diabetes mellitus (GDM): evidence for increased serine/threonine phosphorylation in pregnancy and GDM. Diabetes 49:603–610

    Article  PubMed  CAS  Google Scholar 

  58. Mathews ST, Singh GP, Ranalletta M, Cintron VJ, Qiang X et al (2002) Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes 51:2450–2458

    Article  PubMed  CAS  Google Scholar 

  59. Stein EG, Gustafson TA, Hubbard SR (2001) The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF1 receptors. FEBS Lett 493:106–111

    Article  PubMed  CAS  Google Scholar 

  60. Wang L, Balas B, Christ-Roberts CY, Kim RY, Ramos FJ et al (2007) Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol Cell Biol 27:6497–6505

    Article  PubMed  CAS  Google Scholar 

  61. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S et al (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548

    Article  PubMed  CAS  Google Scholar 

  62. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL et al (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489

    Article  PubMed  CAS  Google Scholar 

  63. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS et al (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12:917–924

    Article  PubMed  CAS  Google Scholar 

  64. Pirola L, Johnston AM, Van Obberghen E (2004) Modulation of insulin action. Diabetologia 47:170–184

    Article  PubMed  CAS  Google Scholar 

  65. White MF (2003) Insulin signaling in health and disease. Science 302:1710–1711

    Article  PubMed  CAS  Google Scholar 

  66. Kahn CR (1980) Role of insulin receptors in insulin-resistant states. Metabolism 29:455–466

    Article  PubMed  CAS  Google Scholar 

  67. Taylor SI, Roth J, Blizzard RM, Elders MJ (1981) Qualitative abnormalities in insulin binding in a patient with extreme insulin resistance: decreased sensitivity to alterations in temperature and pH. Proc Natl Acad Sci USA 78:7157–7161

    Article  PubMed  CAS  Google Scholar 

  68. Wigand JP, Blackard WG (1979) Downregulation of insulin receptors in obese man. Diabetes 28:287–291

    Article  PubMed  CAS  Google Scholar 

  69. Freidenberg GR, Henry RR, Klein HH, Reichart DR, Olefsky JM (1987) Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjects. J Clin Invest 79:240–250

    Article  PubMed  CAS  Google Scholar 

  70. Caro JF, Sinha MK, Raju SM, Ittoop O, Pories WJ et al (1987) Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin-dependent diabetes. J Clin Invest 79:1330–1337

    Article  PubMed  CAS  Google Scholar 

  71. Sinha MK, Pories WJ, Flickinger EG, Meelheim D, Caro JF (1987) Insulin-receptor kinase activity of adipose tissue from morbidly obese humans with and without NIDDM. Diabetes 36:620–625

    Article  PubMed  CAS  Google Scholar 

  72. Le Marchand-Brustel Y, Gremeaux T, Ballotti R, Van Obberghen E (1985) Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice. Nature 315:676–679

    Article  PubMed  Google Scholar 

  73. Arner P, Pollare T, Lithell H, Livingston JN (1987) Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 30:437–440

    Article  PubMed  CAS  Google Scholar 

  74. Obermaier-Kusser B, White MF, Pongratz DE, Su Z, Ermel B et al (1989) A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus. J Biol Chem 264:9497–9504

    PubMed  CAS  Google Scholar 

  75. Nolan JJ, Freidenberg G, Henry R, Reichart D, Olefsky JM (1994) Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin-dependent diabetes mellitus and obesity. J Clin Endocrinol Metab 78:471–477

    Article  PubMed  CAS  Google Scholar 

  76. Maegawa H, Shigeta Y, Egawa K, Kobayashi M (1991) Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in nonobese subjects with NIDDM. Diabetes 40:815–819

    Article  PubMed  CAS  Google Scholar 

  77. Friedman JE, Ishizuka T, Shao J, Huston L, Highman T et al (1999) Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes. Diabetes 48:1807–1814

    Article  PubMed  CAS  Google Scholar 

  78. Barnard RJ, Youngren JF (1992) Regulation of glucose transport in skeletal muscle. FASEB J 6:3238–3244

    PubMed  CAS  Google Scholar 

  79. Goodyear LJ, Kahn BB (1998) Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 49:235–261

    Article  PubMed  CAS  Google Scholar 

  80. Musso C, Cochran E, Moran SA, Skarulis MC, Oral EA et al (2004) Clinical course of genetic diseases of the insulin receptor (type A and Rabson–Mendenhall syndromes): a 30-year prospective. Medicine (Baltimore) 83:209–222

    Article  CAS  Google Scholar 

  81. Wertheimer E, Lu SP, Backeljauw PF, Davenport ML, Taylor SI (1993) Homozygous deletion of the human insulin receptor gene results in Leprechaunism. Nat Genet 5:71–73

    Article  PubMed  CAS  Google Scholar 

  82. Kobayashi M, Sasaoka T, Takata Y, Ishibashi O, Sugibayashi M et al (1988) Insulin resistance by unprocessed insulin proreceptors point mutation at the cleavage site. Biochem Biophys Res Commun 153:657–663

    Article  PubMed  CAS  Google Scholar 

  83. Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47

    Article  PubMed  CAS  Google Scholar 

  84. Arioglu E, Andewelt A, Diabo C, Bell M, Taylor SI et al (2002) Clinical course of the syndrome of autoantibodies to the insulin receptor (type B insulin resistance): a 28-year perspective. Medicine (Baltimore) 81:87–100

    Article  CAS  Google Scholar 

  85. Kellerer M, Sesti G, Seffer E, Obermaier-Kusser B, Pongratz DE et al (1993) Altered pattern of insulin receptor isotypes in skeletal muscle membranes of type 2 (non-insulin-dependent) diabetic subjects. Diabetologia 36:628–632

    Article  PubMed  CAS  Google Scholar 

  86. Accili D, Drago J, Lee EJ, Johnson MD, Cool MH et al (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12:106–109

    Article  PubMed  CAS  Google Scholar 

  87. Joshi RL, Lamothe B, Cordonnier N, Mesbah K, Monthioux E et al (1996) Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J 15:1542–1547

    PubMed  CAS  Google Scholar 

  88. Bruning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D et al (1997) Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88:561–572

    Article  PubMed  CAS  Google Scholar 

  89. Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR et al (2000) Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 105:199–205

    Article  PubMed  CAS  Google Scholar 

  90. Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D et al (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2:559–569

    Article  PubMed  CAS  Google Scholar 

  91. Bluher M, Michael MD, Peroni OD, Ueki K, Carter N et al (2002) Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 3:25–38

    Article  PubMed  CAS  Google Scholar 

  92. Yki-Jarvinen H, Kubo K, Zawadzki J, Lillioja S, Young A et al (1987) Dissociation of in vitro sensitivities of glucose transport and antilipolysis to insulin in NIDDM. Am J Physiol 253:E300–E304

    PubMed  CAS  Google Scholar 

  93. Foster LJ, Klip A (2000) Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells. Am J Physiol Cell Physiol 279:C877–C890

    PubMed  CAS  Google Scholar 

  94. Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Article  PubMed  CAS  Google Scholar 

  95. Guerra C, Navarro P, Valverde AM, Arribas M, Bruning J et al (2001) Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 108:1205–1213

    PubMed  CAS  Google Scholar 

  96. Lin HV, Ren H, Samuel VT, Lee HY, Lu TY et al (2011) Diabetes in mice with selective impairment of insulin action in Glut4-expressing tissues. Diabetes 60:700–709

    Article  PubMed  CAS  Google Scholar 

  97. Ebina Y, Araki E, Taira M, Shimada F, Mori M et al (1987) Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody stimulated glucose uptake and receptor kinase activity. Proc Natl Acad Sci USA 84:704–708

    Article  PubMed  CAS  Google Scholar 

  98. Lauro D, Kido Y, Castle AL, Zarnowski MJ, Hayashi H et al (1998) Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat Genet 20:294–298

    Article  PubMed  CAS  Google Scholar 

  99. Baba T, Shimizu T, Suzuki Y, Ogawara M, Isono K et al (2005) Estrogen, insulin, and dietary signals cooperatively regulate longevity signals to enhance resistance to oxidative stress in mice. J Biol Chem 280:16417–16426

    Article  PubMed  CAS  Google Scholar 

  100. Lin HV, Accili D (2011) Reconstitution of insulin action in muscle, white adipose tissue, and brain of insulin receptor knock-out mice fails to rescue diabetes. J Biol Chem 286:9797–9804

    Article  PubMed  CAS  Google Scholar 

  101. Suzuki K, Kono T (1980) Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci USA 77:2542–2545

    Article  PubMed  CAS  Google Scholar 

  102. Cushman SW, Wardzala LJ (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255:4758–4762

    PubMed  CAS  Google Scholar 

  103. Rea S, James DE (1997) Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46:1667–1677

    Article  PubMed  CAS  Google Scholar 

  104. Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S et al (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport [see comments]. Nature 407:202–207

    Article  PubMed  CAS  Google Scholar 

  105. Jewell JL, Oh E, Ramalingam L, Kalwat MA, Tagliabracci VS et al (2011) Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol 193:185–199

    Article  PubMed  CAS  Google Scholar 

  106. Sarabia V, Ramlal T, Klip A (1990) Glucose uptake in human and animal muscle cells in culture. Biochem Cell Biol 68:536–542

    Article  PubMed  CAS  Google Scholar 

  107. Burdett E, Beeler T, Klip A (1987) Distribution of glucose transporters and insulin receptors in the plasma membrane and transverse tubules of skeletal muscle. Arch Biochem Biophys 253:279–286

    Article  PubMed  CAS  Google Scholar 

  108. Hansen PA, Gulve EA, Marshall BA, Gao J, Pessin JE et al (1995) Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the Glut4 glucose transporter. J Biol Chem 270:1679–1684

    Article  PubMed  CAS  Google Scholar 

  109. Sun XJ, Wang LM, Zhang Y, Yenush L, Myers MG et al (1995) Role of IRS-2 in insulin and cytokine signalling. Nature 377:173–177

    Article  PubMed  CAS  Google Scholar 

  110. Huang C, Thirone AC, Huang X, Klip A (2005) Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. J Biol Chem 280:19426–19435

    Article  PubMed  CAS  Google Scholar 

  111. Fasshauer M, Klein J, Ueki K, Kriauciunas KM, Benito M et al (2000) Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes. J Biol Chem 275:25494–25501

    Article  PubMed  CAS  Google Scholar 

  112. Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278:25323–25330

    Article  PubMed  CAS  Google Scholar 

  113. Fantin VR, Lavan BE, Wang Q, Jenkins NA, Gilbert DJ et al (1999) Cloning, tissue expression, and chromosomal location of the mouse insulin receptor substrate 4 gene. Endocrinology 140:1329–1337

    Article  PubMed  CAS  Google Scholar 

  114. Myers MG, Backer JM, Sun XJ, Shoelson S, Hu P et al (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci USA 89:10350–10354

    Article  PubMed  CAS  Google Scholar 

  115. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P et al (2001) Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 15:2099–2111

    Article  PubMed  CAS  Google Scholar 

  116. Shepherd PR, Withers DJ, Siddle K (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333(Pt 3):471–490

    PubMed  CAS  Google Scholar 

  117. Mora A, Komander D, van Aalten DM, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15:161–170

    Article  PubMed  CAS  Google Scholar 

  118. Kotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H et al (1998) Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol 18:6971–6982

    PubMed  CAS  Google Scholar 

  119. Bae SS, Cho H, Mu J, Birnbaum MJ (2003) Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. J Biol Chem 278:49530–49536

    Article  PubMed  CAS  Google Scholar 

  120. Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K et al (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15:2203–2208

    Article  PubMed  CAS  Google Scholar 

  121. Miinea CP, Sano H, Kane S, Sano E, Fukuda M et al (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391:87–93

    Article  PubMed  CAS  Google Scholar 

  122. Sano H, Kane S, Sano E, Miinea CP, Asara JM et al (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599–14602

    Article  PubMed  CAS  Google Scholar 

  123. Pessin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106:165–169

    Article  PubMed  CAS  Google Scholar 

  124. Liu J, Kimura A, Baumann CA, Saltiel AR (2002) APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol Cell Biol 22:3599–3609

    Article  PubMed  CAS  Google Scholar 

  125. Hu J, Liu J, Ghirlando R, Saltiel AR, Hubbard SR (2003) Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Mol Cell 12:1379–1389

    Article  PubMed  CAS  Google Scholar 

  126. Ribon V, Printen JA, Hoffman NG, Kay BK, Saltiel AR (1998) A novel, multifunctional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol Cell Biol 18:872–879

    PubMed  CAS  Google Scholar 

  127. Liu J, Deyoung SM, Zhang M, Dold LH, Saltiel AR (2005) The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J Biol Chem 280:16125–16134

    Article  PubMed  CAS  Google Scholar 

  128. Ribon V, Hubbell S, Herrera R, Saltiel AR (1996) The product of the cbl oncogene forms stable complexes in vivo with endogenous Crk in a tyrosine phosphorylation-dependent manner. Mol Cell Biol 16:45–52

    PubMed  CAS  Google Scholar 

  129. Knudsen BS, Feller SM, Hanafusa H (1994) Four proline-rich sequences of the guanine-nucleotide exchange factor C3G bind with unique specificity to the first Src homology 3 domain of Crk. J Biol Chem 269:32781–32787

    PubMed  CAS  Google Scholar 

  130. Chiang S-H, Baumann CA, Kanzaki M, Thurmond DC, Watson RT et al (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410:944–948

    Article  PubMed  CAS  Google Scholar 

  131. Watson RT, Shigematsu S, Chiang SH, Mora S, Kanzaki M et al (2001) Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J Cell Biol 154:829–840

    Article  PubMed  CAS  Google Scholar 

  132. Chang L, Adams RD, Saltiel AR (2002) The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes. Proc Natl Acad Sci USA 99:12835–12840

    Article  PubMed  CAS  Google Scholar 

  133. Omata W, Shibata H, Li L, Takata K, Kojima I (2000) Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem J 346:321–328

    Article  PubMed  CAS  Google Scholar 

  134. Tsakiridis T, Vranic M, Klip A (1994) Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem 269:29934–29942

    PubMed  CAS  Google Scholar 

  135. Brozinick JT Jr, Berkemeier BA, Elmendorf JS (2007) “Actin”g on GLUT4: membrane and cytoskeletal components of insulin action. Curr Diabetes Rev 3:111–122

    Article  PubMed  CAS  Google Scholar 

  136. Kanzaki M, Pessin JE (2001) Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem 276:42436–42444

    Article  PubMed  CAS  Google Scholar 

  137. Moodie SA, Alleman-Sposeto J, Gustafson TA (1999) Identification of the APS protein as a novel insulin receptor substrate [in process citation]. J Biol Chem 274:11186–11193

    Article  PubMed  CAS  Google Scholar 

  138. Yokouchi M, Suzuki R, Masuhara M, Komiya S, Inoue A et al (1997) Cloning and characterization of APS, an adaptor molecule containing PH and SH2 domains that is tyrosine phosphorylated upon B-cell receptor stimulation. Oncogene 15:7–15

    Article  PubMed  CAS  Google Scholar 

  139. Ahmed Z, Pillay TS (2001) Functional effects of APS and SH2-B on insulin receptor signalling. Biochem Soc Trans 29:529–534

    Article  PubMed  CAS  Google Scholar 

  140. Kotani K, Wilden P, Pillay TS (1998) SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase. Biochem J 335(Pt 1):103–109

    PubMed  CAS  Google Scholar 

  141. Barres R, Gonzalez T, Le Marchand-Brustel Y, Tanti JF (2005) The interaction between the adaptor protein APS and Enigma is involved in actin organisation. Exp Cell Res 308:334–344

    Article  PubMed  CAS  Google Scholar 

  142. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR et al (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  143. Scherer PE, Lisanti MP, Baldini G, Sargiacomo M, Mastick CC et al (1994) Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol 127:1233–1243

    Article  PubMed  CAS  Google Scholar 

  144. Mastick CC, Saltiel AR (1997) Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem 272:20706–20714

    Article  PubMed  CAS  Google Scholar 

  145. Mastick CC, Brady MJ, Saltiel AR (1995) Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 129:1523–1531

    Article  PubMed  CAS  Google Scholar 

  146. Kimura A, Mora S, Shigematsu S, Pessin JE, Saltiel AR (2002) The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. J Biol Chem 277:30153–30158

    Article  PubMed  CAS  Google Scholar 

  147. Cohen AW, Razani B, Wang XB, Combs TP, Williams TM et al (2003) Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol 285:C222–C235

    Article  PubMed  CAS  Google Scholar 

  148. Tang Z, Scherer PE, Okamoto T, Song K, Chu C et al (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261

    Article  PubMed  CAS  Google Scholar 

  149. Oshikawa J, Otsu K, Toya Y, Tsunematsu T, Hankins R et al (2004) Insulin resistance in skeletal muscles of caveolin-3-null mice. Proc Natl Acad Sci USA 101:12670–12675

    Article  PubMed  Google Scholar 

  150. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276:21425–21433

    Article  PubMed  CAS  Google Scholar 

  151. Fecchi K, Volonte D, Hezel MP, Schmeck K, Galbiati F (2006) Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J 20:705–707

    PubMed  CAS  Google Scholar 

  152. Tellam JT, Macaulay SL, McIntosh S, Hewish DR, Ward CW et al (1997) Characterization of Munc-18c and syntaxin-4 in 3T3-L1 adipocytes. Putative role in insulin-dependent movement of GLUT-4. J Biol Chem 272:6179–6186

    Article  PubMed  CAS  Google Scholar 

  153. Thurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K et al (1998) Regulation of insulin-stimulated GLUT4 translocation by munc18c in 3T3L1 adipocytes. J Biol Chem 273:33876–33883

    Article  PubMed  CAS  Google Scholar 

  154. Umahara M, Okada S, Yamada E, Saito T, Ohshima K et al (2008) Tyrosine phosphorylation of Munc18c regulates platelet-derived growth factor-stimulated glucose transporter 4 translocation in 3T3L1 adipocytes. Endocrinology 149:40–49 (Epub 2007 Oct 2004)

    Article  PubMed  CAS  Google Scholar 

  155. Sasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B et al (1994) Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem 269:13689–13694

    PubMed  CAS  Google Scholar 

  156. Virkamaki A, Ueki K, Kahn CR (1999) Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943

    Article  PubMed  CAS  Google Scholar 

  157. Paez-Espinosa EV, Rocha EM, Velloso LA, Boschero AC, Saad MJ (1999) Insulin-induced tyrosine phosphorylation of Shc in liver, muscle and adipose tissue of insulin resistant rats. Mol Cell Endocrinol 156:121–129

    Article  PubMed  CAS  Google Scholar 

  158. Isakoff SJ, Yu YP, Su YC, Blaikie P, Yajnik V et al (1996) Interaction between the phosphotyrosine binding domain of Shc and the insulin receptor is required for Shc phosphorylation by insulin in vivo. J Biol Chem 271:3959–3962

    Article  PubMed  CAS  Google Scholar 

  159. Gustafson TA, He W, Craparo A, Schaub CD, O’Neill TJ (1995) Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol 15:2500–2508

    PubMed  CAS  Google Scholar 

  160. He W, O’Neill T, Gustafson T (1995) Distinct modes of interaction of SHC and insulin receptor substrate-1 with the insulin receptor NPEY region via Non-SH2 domains. J Biol Chem 270:23258–23262

    Article  PubMed  CAS  Google Scholar 

  161. Sasaoka T, Ishihara H, Sawa T, Ishiki M, Morioka H et al (1996) Functional importance of amino-terminal domain of Shc for interaction with insulin and epidermal growth factor receptors in phosphorylation-independent manner. J Biol Chem 271:20082–20087

    Article  PubMed  CAS  Google Scholar 

  162. Skolnik E, Lee C, Batzer A, Vicentini L, Zhou M et al (1993) The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS-1 and Shc: implications for insulin control of ras signalling. EMBO J 12:1929–1936

    PubMed  CAS  Google Scholar 

  163. Sasaoka T, Draznin B, Leitner JW, Langlois WJ, Olefsky JM (1994) Shc is the predominant signaling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21ras-GTP formation. J Biol Chem 269:10734–10738

    PubMed  CAS  Google Scholar 

  164. Yamauchi K, Pessin JE (1994) Insulin receptor substrate-1 (IRS1) and Shc compete for a limited pool of Grb2 in mediating insulin downstream signaling. J Biol Chem 269:31107–31114

    PubMed  CAS  Google Scholar 

  165. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (1996) A Grb2-associated docking protein in EGF-and insulin-receptor signalling. Nature 379:560–564

    Article  PubMed  CAS  Google Scholar 

  166. Kruger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR et al (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci USA 105:2451–2456

    Article  PubMed  Google Scholar 

  167. Ibarrola N, Molina H, Iwahori A, Pandey A (2004) A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C] tyrosine. J Biol Chem 279:15805–15813

    Article  PubMed  CAS  Google Scholar 

  168. Rocchi S, Tartare-Deckert S, Murdaca J, Holgado-Madruga M, Wong AJ et al (1998) Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules. Mol Endocrinol 12:914–923

    Article  PubMed  CAS  Google Scholar 

  169. Sawka-Verhelle D, Filloux C, Tartare-Deckert S, Mothe I, Van Obberghen E (1997) Identification of Stat 5B as a substrate of the insulin receptor. Eur J Biochem 250:411–417

    Article  PubMed  CAS  Google Scholar 

  170. Chen J, Sadowski HB, Kohanski RA, Wang LH (1997) Stat5 is a physiological substrate of the insulin receptor. Proc Natl Acad Sci USA 94:2295–2300

    Article  PubMed  CAS  Google Scholar 

  171. Sadowski CL, Choi TS, Le M, Wheeler TT, Wang LH et al (2001) Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 skeletal muscle cells is mediated by Stat5*. J Biol Chem 276:20703–20710

    Article  PubMed  CAS  Google Scholar 

  172. Ihle JN (1996) STATs: signal transducers and activators of transcription. Cell 84:331–334

    Article  PubMed  CAS  Google Scholar 

  173. Sawka-Verhelle D, Tartare-Deckert S, Decaux JF, Girard J, Van Obberghen E (2000) Stat 5B, activated by insulin in a Jak-independent fashion, plays a role in glucokinase gene transcription. Endocrinology 141:1977–1988

    Article  PubMed  CAS  Google Scholar 

  174. Nanbu-Wakao R, Morikawa Y, Matsumura I, Masuho Y, Muramatsu MA et al (2002) Stimulation of 3T3-L1 adipogenesis by signal transducer and activator of transcription 5. Mol Endocrinol 16:1565–1576

    Article  PubMed  CAS  Google Scholar 

  175. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH et al (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 94:7239–7244

    Article  PubMed  CAS  Google Scholar 

  176. Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D et al (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991

    Article  PubMed  CAS  Google Scholar 

  177. Bouzakri K, Roques M, Debard C, Berbe V, Rieusset J et al (2004) WY-14643 and 9-cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells: differential effect in myotubes from healthy subjects and type 2 diabetic patients. Diabetologia 47:1314–1323

    Article  PubMed  CAS  Google Scholar 

  178. Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C et al (1994) Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370:153–157

    Article  PubMed  CAS  Google Scholar 

  179. Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zurcher G et al (1991) Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 11:2057–2065

    PubMed  CAS  Google Scholar 

  180. Firmbach-Kraft I, Byers M, Shows T, Dalla-Favera R, Krolewski JJ (1990) tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene 5:1329–1336

    PubMed  CAS  Google Scholar 

  181. Harpur AG, Andres AC, Ziemiecki A, Aston RR, Wilks AF (1992) JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7:1347–1353

    PubMed  CAS  Google Scholar 

  182. Giorgetti-Peraldi S, Peyrade F, Baron V, Van Obberghen E (1995) Involvement of Janus kinases in the insulin signaling pathway. Eur J Biochem 234:656–660

    Article  PubMed  CAS  Google Scholar 

  183. Saad MJ, Carvalho CR, Thirone AC, Velloso LA (1996) Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat. J Biol Chem 271:22100–22104

    Article  PubMed  CAS  Google Scholar 

  184. Gual P, Baron V, Lequoy V, Van Obberghen E (1998) Interaction of Janus kinases JAK-1 and JAK-2 with the insulin receptor and the insulin-like growth factor-1 receptor. Endocrinology 139:884–893

    Article  PubMed  CAS  Google Scholar 

  185. Hresko RC, Hoffman RD, Flores-Riveros JR, Lane MD (1990) Insulin receptor tyrosine kinase-catalyzed phosphorylation of 422(aP2) protein. Substrate activation by long-chain fatty acid. J Biol Chem 265:21075–21085

    PubMed  CAS  Google Scholar 

  186. Hresko RC, Bernier M, Hoffman RD, Flores-Riveros JR, Liao K et al (1988) Identification of phosphorylated 422 (aP2) protein as pp 15, the 15-kilodalton target of the insulin receptor tyrosine kinase in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 85:8835–8839

    Article  PubMed  CAS  Google Scholar 

  187. Soos MA, Field CE, Siddle K (1993) Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J 290:419–426

    PubMed  CAS  Google Scholar 

  188. Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A et al (1999) Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 5:1935–1944

    PubMed  CAS  Google Scholar 

  189. Kosaki A, Pillay TS, Xu L, Webster NJ (1995) The B isoform of the insulin receptor signals more efficiently than the A isoform in HepG2 cells. J Biol Chem 270:20816–20823

    Article  PubMed  CAS  Google Scholar 

  190. Belfiore A, Pandini G, Vella V, Squatrito S, Vigneri R (1999) Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer. Biochimie 81:403–407

    Article  PubMed  CAS  Google Scholar 

  191. Belfiore A (2007) The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr Pharm Des 13:671–686

    Article  PubMed  CAS  Google Scholar 

  192. Katic M, Kahn CR (2005) The role of insulin and IGF-1 signaling in longevity. Cell Mol Life Sci 62:320–343

    Article  PubMed  CAS  Google Scholar 

  193. Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8:681–691

    Article  PubMed  CAS  Google Scholar 

  194. Rincon M, Rudin E, Barzilai N (2005) The insulin/IGF-1 signaling in mammals and its relevance to human longevity. Exp Gerontol 40:873–877

    Article  PubMed  CAS  Google Scholar 

  195. Rincon M, Muzumdar R, Atzmon G, Barzilai N (2004) The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev 125:397–403

    Article  PubMed  CAS  Google Scholar 

  196. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  PubMed  CAS  Google Scholar 

  197. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  PubMed  CAS  Google Scholar 

  198. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  199. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  200. Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960

    Article  PubMed  CAS  Google Scholar 

  201. Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS et al (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272

    Article  PubMed  CAS  Google Scholar 

  202. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI et al (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97

    PubMed  CAS  Google Scholar 

  203. Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA et al (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    Article  PubMed  CAS  Google Scholar 

  204. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125

    Article  PubMed  CAS  Google Scholar 

  205. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  PubMed  CAS  Google Scholar 

  206. Bluher M (2008) Fat tissue and long life. Obes Facts 1:176–182

    Article  PubMed  Google Scholar 

  207. Paolisso G, Manzella D, Rizzo MR, Barbieri M, Gambardella A et al (2000) Effects of glucose ingestion on cardiac autonomic nervous system in healthy centenarians: differences with aged subjects. Eur J Clin Invest 30:277–284

    Article  PubMed  CAS  Google Scholar 

  208. Picard F, Guarente L (2005) Molecular links between aging and adipose tissue. Int J Obes (Lond) 29(Suppl 1):S36–S39

    Article  CAS  Google Scholar 

  209. Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M et al (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22:807–818

    Article  PubMed  CAS  Google Scholar 

  210. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  PubMed  CAS  Google Scholar 

  211. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452

    Article  PubMed  CAS  Google Scholar 

  212. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L et al (1997) The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  PubMed  CAS  Google Scholar 

  213. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM et al (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    PubMed  CAS  Google Scholar 

  214. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  PubMed  CAS  Google Scholar 

  215. Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C et al (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8:460–472

    Article  PubMed  CAS  Google Scholar 

  216. Li Y, Wang WJ, Cao H, Lu J, Wu C et al (2009) Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 18:4897–4904

    Article  PubMed  CAS  Google Scholar 

  217. Lunetta KL, D’Agostino RB Sr, Karasik D, Benjamin EJ, Guo CY et al (2007) Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study. BMC Med Genet 8(Suppl 1):S13

    Article  PubMed  CAS  Google Scholar 

  218. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  219. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  PubMed  CAS  Google Scholar 

  220. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    Article  PubMed  CAS  Google Scholar 

  221. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    Article  PubMed  CAS  Google Scholar 

  222. Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280:20589–20595

    Article  PubMed  CAS  Google Scholar 

  223. Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177

    Article  PubMed  CAS  Google Scholar 

  224. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  PubMed  CAS  Google Scholar 

  225. Schenk S, McCurdy CE, Philp A, Chen MZ, Holliday MJ et al (2011) Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest 121:4281–4288

    Article  PubMed  CAS  Google Scholar 

  226. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  PubMed  CAS  Google Scholar 

  227. Frojdo S, Durand C, Molin L, Carey AL, El-Osta A et al (2011) Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 335:166–176

    Article  PubMed  CAS  Google Scholar 

  228. Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N et al (2009) SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 29:1363–1374

    Article  PubMed  CAS  Google Scholar 

  229. Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–1481

    Article  PubMed  CAS  Google Scholar 

  230. Tremblay F, Marette A (2001) Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 276:38052–38060

    PubMed  CAS  Google Scholar 

  231. Takano A, Usui I, Haruta T, Kawahara J, Uno T et al (2001) Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol 21:5050–5062

    Article  PubMed  CAS  Google Scholar 

  232. Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12:487–502

    Article  PubMed  CAS  Google Scholar 

  233. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  234. Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G (2009) Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 23:496–511

    Article  PubMed  CAS  Google Scholar 

  235. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed  CAS  Google Scholar 

  236. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    Article  PubMed  CAS  Google Scholar 

  237. Cruzado JM (2008) Nonimmunosuppressive effects of mammalian target of rapamycin inhibitors. Transplant Rev (Orlando) 22:73–81

    Article  Google Scholar 

  238. Morrisett JD, Abdel-Fattah G, Hoogeveen R, Mitchell E, Ballantyne CM et al (2002) Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 43:1170–1180

    PubMed  CAS  Google Scholar 

  239. Ost A, Svensson K, Ruishalme I, Brannmark C, Franck N et al (2010) Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 16:235–246

    Article  PubMed  CAS  Google Scholar 

  240. Pereira MJ, Palming J, Rizell M, Aureliano M, Carvalho E et al (2012) mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes. Mol Cell Endocrinol 355:96–105

    Article  PubMed  CAS  Google Scholar 

  241. Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K et al (2010) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59:1338–1348

    Article  PubMed  CAS  Google Scholar 

  242. Manning BD (2004) Balancing Akt with S6 K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167:399–403

    Article  PubMed  CAS  Google Scholar 

  243. Wang Y, Li R, Du D, Zhang C, Yuan H et al (2006) Proteomic analysis reveals novel molecules involved in insulin signaling pathway. J Proteome Res 5:846–855

    Article  PubMed  CAS  Google Scholar 

  244. Longo N, Wang Y, Smith SA, Langley SD, DiMeglio LA et al (2002) Genotype-phenotype correlation in inherited severe insulin resistance. Hum Mol Genet 11:1465–1475

    Article  PubMed  CAS  Google Scholar 

  245. Cariou B, Postic C, Boudou P, Burcelin R, Kahn CR et al (2004) Cellular and molecular mechanisms of adipose tissue plasticity in muscle insulin receptor knockout mice. Endocrinology 145:1926–1932

    Article  PubMed  CAS  Google Scholar 

  246. Capozza F, Combs TP, Cohen AW, Cho YR, Park SY et al (2005) Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Physiol 288:C1317–C1331

    Article  PubMed  CAS  Google Scholar 

  247. Minami A, Iseki M, Kishi K, Wang M, Ogura M et al (2003) Increased insulin sensitivity and hypoinsulinemia in APS knockout mice. Diabetes 52:2657–2665

    Article  PubMed  CAS  Google Scholar 

  248. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H et al (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372:182–186

    Article  PubMed  CAS  Google Scholar 

  249. Tamemoto H, Tobe K, Yamauchi T, Terauchi Y, Kaburagi Y et al (1997) Insulin resistance syndrome in mice deficient in insulin receptor substrate-1. Ann N Y Acad Sci 827:85–93

    Article  PubMed  CAS  Google Scholar 

  250. Oh E, Spurlin BA, Pessin JE, Thurmond DC (2005) Munc18c heterozygous knockout mice display increased susceptibility for severe glucose intolerance. Diabetes 54:638–647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would first like to express our regret to whose work was not cited due to lack of space. We would like to Dr. Stephanie Yoder and Dr. Michael Kalwat for the critical reading of the manuscript. This study was supported by grants from the National Institutes of Health (DK067912 and DK076614 to D.C.T.), the Indiana University School of Medicine Showalter Foundation (to E.O.), and a pre-doctoral fellowship from the American Heart Association (to L.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie C. Thurmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramalingam, L., Oh, E. & Thurmond, D.C. Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates. Cell. Mol. Life Sci. 70, 2815–2834 (2013). https://doi.org/10.1007/s00018-012-1176-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1176-1

Keywords

Navigation