Skip to main content

Separators for Polynomial Dynamic Systems with Linear Complexity

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2019)

Abstract

Computation biology helps to understand processes in organisms from interaction of molecules to complex functions of whole organs. Therefore, there is a need for mathematical methods and models that deliver logical explanations in a reasonable time. We propose herein a method based on algebraic separators, which are special polynomials abundantly studied in effective Galois theory. These polynomials are used in modelling discrete data related to cellular pathways affected in cancer and targeting therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benkahla, A., Guizani-Tabbane, L., Abdeljaoued-Tej, I., BenMiled, S., Dellagi, K.: Systems biology and infectious diseases. In: Handbook of Research on Systems Biology Applications in Medicine, vol. 1, pp. 377–402 (2008)

    Chapter  Google Scholar 

  2. Bortolussi, L., Policriti, A.: Hybrid Systems and Biology. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68894-5_12

    Book  MATH  Google Scholar 

  3. Ceria, M., Mora, T., Visconti, A.: Efficient computation of squarefree separator polynomials. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 98–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8_12

    Chapter  Google Scholar 

  4. Dimitrova, E.S., Vera-Licona, P., McGee, J., Laubenbacher, R.C.: Discretization of time series data. J. Comput. Biol. 17, 853–868 (2010)

    Article  MathSciNet  Google Scholar 

  5. Lagrange, J.: Réflexions sur la résolution algébrique des équations (1770)

    Google Scholar 

  6. Laubenbacher, R.: A computer algebra approach to biological systems. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation. ACM, New York (2003)

    Google Scholar 

  7. Lundqvist, S.: Complexity of comparing monomials and two improvements of the Buchberger-Möller algorithm. In: Calmet, J., Geiselmann, W., Müller-Quade, J. (eds.) Mathematical Methods in Computer Science. LNCS, vol. 5393, pp. 105–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89994-5_9

    Chapter  Google Scholar 

  8. Lundqvist, S.: Vector space bases associated to vanishing ideals of points. J. Pure Appl. Algebra 214(4), 309–321 (2010)

    Article  MathSciNet  Google Scholar 

  9. Mora, T.: The FGLM problem and Möeller’s algorithm on zero-dimensional ideals. In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds.) Gröbner Bases, Coding, and Cryptography, pp. 27–45. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-93806-4_3

    Chapter  MATH  Google Scholar 

  10. Stein, W., Joyner, D., Developers, T.S.: SageMath (System for algebra and geometry experimentation), the Sage Mathematics Software System (2019). http://www.sagemath.org

  11. Tchebotarev, N.: Gründzüge des Galois’shen Theorie. P. Noordhoff (1950)

    Google Scholar 

  12. Thomas, R.: Kinetic Logic: A Boolean Approach to the Analysis of Complex Regulatory Systems. Lecture Notes in Biomathematics, vol. 29. Springer, Heidelberg (1979). https://doi.org/10.1007/978-3-642-49321-8

    Book  Google Scholar 

  13. Valibouze, A.: Symbolic computation with symmetric polynomials, an extension to MACSYMA. In: Kaltofen, E., Watt, S.M. (eds.) Computers and Mathematics, pp. 308–320. Springer, New York (1989). https://doi.org/10.1007/978-1-4613-9647-5_35

    Chapter  Google Scholar 

  14. Valibouze, A., Abdeljaoued, I., BenKahla, A.: Galoisian separators for biological systems. In: Mathematics Algorithms Proofs - Formalization of Mathematics, Monastir, Tunisia (2009)

    Google Scholar 

  15. Van Kessel, K.E., Zuiverloon, T.C., Alberts, A.R., Boormans, J.L., Zwarthoff, E.C.: Targeted therapies in bladder cancer: an overview of in vivo research. Nat. Rev. Urol. 12(12), 681 (2015)

    Article  Google Scholar 

  16. Wang, X., Zhang, S., Dong, T.: A bivariate preprocessing paradigm for the Buchberger-Möller algorithm. J. Comput. Appl. Math. 234(12), 3344–3355 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Abdeljaoued-Tej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdeljaoued-Tej, I., Benkahla, A., Haddad, G., Valibouze, A. (2019). Separators for Polynomial Dynamic Systems with Linear Complexity. In: Bortolussi, L., Sanguinetti, G. (eds) Computational Methods in Systems Biology. CMSB 2019. Lecture Notes in Computer Science(), vol 11773. Springer, Cham. https://doi.org/10.1007/978-3-030-31304-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31304-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31303-6

  • Online ISBN: 978-3-030-31304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics