Skip to main content

Hybrid Systems and Biology

Continuous and Discrete Modeling for Systems Biology

  • Conference paper
Formal Methods for Computational Systems Biology (SFM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5016))

Abstract

Hybrid Systems are dynamical systems presenting both discrete and continuous evolution. Hybrid Automata are a formal model for hybrid systems, originally proposed to study embedded systems, where a discrete control acts on a continuously changing environment.

The presence of both discrete and continuous dynamics makes this formalism appealing also for modeling biological systems. However, the situation in this case is subtler, as there is no natural separation into discrete and continuous components. No surprise, then, that hybrid automata have been used in systems biology in rather different ways. Some approaches, like the description of biological switches, concentrate on the use of model-checking routines. Other applications, like the switching between continuous and discrete/stochastic simulation, focus on the exploitation of the interplay between discreteness and continuity in order to reduce the computational burden of numerical simulation, yet maintaining an acceptable precision.

We will survey the use of hybrid automata in systems biology, through a series of cases studies that we deem interesting and paradigmatic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Belta, C., Ivančić, F.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Batt, G., Belta, C.: Model checking genetic regulatory networks with applications to synthetic biology. Technical Report 2006-IR-0030, CISE Tech. Rep., Boston University (2006)

    Google Scholar 

  4. Batt, G., Belta, C., Weiss, R.: Model checking liveness properties of genetic regulatory networks. In: Proceedings of TACAS, pp. 323–338 (2007)

    Google Scholar 

  5. Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic dynamics of gene networks. T. Comp. Sys. Biology, pp. 99–122 (2006)

    Google Scholar 

  6. Bujorianu, M.L., Lygeros, J.: General stochastic hybrid systems: Modeling and optimal control. In: Proceedings of 43rd IEEE Conference on Decision and Control (CDC 2004), pp. 182–187 (2004)

    Google Scholar 

  7. Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On O-Minimal Hybrid Systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 219–233. Springer, Heidelberg (2004)

    Google Scholar 

  8. Bortolussi, L.: Stochastic concurrent constraint programming. In: Proceedings of 4th International Workshop on Quantitative Aspects of Programming Languages, QAPL 2006. ENTCS, vol. 164, pp. 65–80 (2006)

    Google Scholar 

  9. Bortolussi, L.: Constraint-based approaches to stochastic dynamics of biological systems. PhD thesis, PhD in Computer Science, University of Udine (preparation 2007)

    Google Scholar 

  10. Bortolussi, L., Policriti, A.: Stochastic concurrent constraint programming and differential equations. In: Proceedings of QAPL 2007 (2007)

    Google Scholar 

  11. Bortolussi, L., Policriti, A.: Hybrid approximation of stochastic concurrent constraint programming. In: IFAC 2008 (2008)

    Google Scholar 

  12. Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic concurrent constraint programming. Constraints 13(1) (2008)

    Google Scholar 

  13. Casagrande, A., Mysore, V., Piazza, C., Mishra, B.: Independent dynamics hybrid automata in systems biology. In: Proceedings of the First International Conference on Algebraic Biology (AB 2005), November 2005, pp. 61–73. Universal Academy Press, Inc, Tokyo, Japan (2005)

    Google Scholar 

  14. Casagrande, A., Piazza, C., Mishra, B.: Semi-Algebraic Constant Reset Hybrid Automata - SACoRe. In: Proceedings of the 44rd Conference on Decision and Control and European Control Conference (CDC-ECC 2005), Seville, Spain, December 2005, pp. 678–683. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  15. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  16. Elowitz, M.B., Leibler, S.: A syntetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  17. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072 (1990)

    Google Scholar 

  18. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. of Computational Physics 22 (1976)

    Google Scholar 

  19. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of Physical Chemistry 81(25) (1977)

    Google Scholar 

  20. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (1996)

    Google Scholar 

  21. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proceedings of the Thirty-Sixth Annual Symposium on Foundations of Computer Science (FOCS 1995), Washington, DC, USA, p. 453 (1995)

    Google Scholar 

  22. Hillston, J.: Fluid flow approximation of pepa models. In: Proceedings of the Second International Conference on the Quantitative Evaluation of Systems (QEST 2005) (2005)

    Google Scholar 

  23. Henzinger, T.A., Kopke, P.W.: State Equivalences for Rectangular Hybrid Automata. In: Montanari, U., Sassone, V. (eds.) Proc. of Int. Conference on Concurrency Theory (Concur 1996), vol. 1119, pp. 530–545 (1996)

    Google Scholar 

  24. Hardy, S., Robillard, P.N.: Modeling and simulation of molecular biology systems using petri nets: Modeling goals of various approaches. Journal of Bioinformatics and Computational Biology 2(4), 619–637 (2004)

    Article  Google Scholar 

  25. Kopke, P.W.: The Theory of Rectangular Hybrid Automata. PhD thesis, Faculty of the Graduate School, Cornell University, Advisor - T. A. Henzinger (1996)

    Google Scholar 

  26. Lafferriere, G., Pappas, G.J., Sastry, S.: O-Minimal Hybrid Systems. Mathematics of Control, Signals, and Systems 13, 1–21 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Neogi, N.A.: Dynamic partitioning of large discrete event biological systems for hybrid simulation and analysis. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 463–476. Springer, Heidelberg (2004)

    Google Scholar 

  28. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic algebraic model checking i: Challenges from systems biology. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)

    Google Scholar 

  29. Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential inclusions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 95–104. Springer, Heidelberg (1994)

    Google Scholar 

  30. Ross, S.M.: Stochastic Processes. Wiley, New York (1996)

    MATH  Google Scholar 

  31. Saraswat, V.A.: Concurrent Constraint Programming. MIT Press, Cambridge (1993)

    Google Scholar 

  32. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman and Hall, Boca Raton (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Bernardo Pierpaolo Degano Gianluigi Zavattaro

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bortolussi, L., Policriti, A. (2008). Hybrid Systems and Biology . In: Bernardo, M., Degano, P., Zavattaro, G. (eds) Formal Methods for Computational Systems Biology. SFM 2008. Lecture Notes in Computer Science, vol 5016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68894-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68894-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68892-1

  • Online ISBN: 978-3-540-68894-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics