Skip to main content

Advancing Prosthetic Designs

  • Chapter
  • First Online:
Prosthetic Designs for Restoring Human Limb Function
  • 648 Accesses

Abstract

Much research effort is aimed at improving prosthetic functions, particularly the upper limb. The human-machine interface (HMI) remains the weak link in prosthetic restoration of function, and HMI technologies have advanced over the past decade, as demonstrated by greater dexterity in trials. In particular, the sensors used to encode users’ volition have been upgraded and simplified to endow more function to users. Many other innovations are being developed, including surgical re-routing of nerves, brain implants, and closed-loop control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Resnik L, Borgia M. User ratings of prosthetic usability and satisfaction in VA study to optimize DEKA arm. J Rehabil Res Dev. 2014;51(1):15–26.

    Article  PubMed  Google Scholar 

  2. Soares A, Andrade A, Lamounier E, Carrijo R. The development of a virtual myoelectric prosthesis controlled by an EMG pattern recognition system based on neural networks. J Intell Inform Syst. 2003;21(2):127–41.

    Article  Google Scholar 

  3. Steeper R. Bebionic hand. 2014. www.bebionic.com.

  4. Light CM, Chappell PH, Kyberd PJ. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil. 2002;83(6):776–83.

    Article  PubMed  Google Scholar 

  5. Craelius W. BBC television show on Dextra. Front Med. 2001.

    Google Scholar 

  6. Kuttiva M, Burdea G, Flint J, Craelius W. Manipulation practice for upper-limb amputees using virtual reality. Presence. 2005;14(2):175–82.

    Article  Google Scholar 

  7. Kuttiva M, Flint J, Burdea G, Craelius W. VIA: a virtual interface for the arm of upper-limb amputees. In: Second international workshop on virtual rehabilitation: IWVR, Piscataway; 2003.

    Google Scholar 

  8. Bouwsema H, van der Sluis CK, Bongers RM. Effect of feedback during virtual training of grip force control with a myoelectric prosthesis. PLoS One. 2014;9(5):e98301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Davoodi R, Loeb GE. Development of a physics-based target shooting game to train amputee users of multijoint upper limb prostheses. Presence. 2012;21(1):85–95.

    Article  Google Scholar 

  10. Davoodi R, Loeb GE. Real-time animation software for customized training to use motor prosthetic systems. IEEE Trans Neural Syst Rehabil Eng. 2012;20(2):134–42.

    Article  PubMed  Google Scholar 

  11. Hauschild M, Davoodi R, Loeb GE. A virtual reality environment for designing and fitting neural prosthetic limbs. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):9–15.

    Article  PubMed  Google Scholar 

  12. Manal K. Real-time control of an EMG-driven virtual arm. Med Sci Sports Exerc. 2004;36(5):S1.

    Google Scholar 

  13. Resnik L, Etter K, Klinger SL, Kambe C. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis. J Rehabil Res Dev. 2011;48(6):707–18.

    Article  PubMed  Google Scholar 

  14. Zeher MJ, Armiger RS, Burck JM, Moran C, Kiely JB, Weeks SR, Tsao JW, Pasquina PF, Davoodi R, Loeb G. Using a virtual integration environment in treating phantom limb pain. Stud Health Technol Inform. 2011;163:730–6.

    PubMed  Google Scholar 

  15. Antuvan CW, Ison M, Artemiadis P. Embedded human control of robots using myoelectric interfaces. IEEE Trans Neural Syst Rehabil Eng. 2014;22(4):820–7.

    Article  PubMed  Google Scholar 

  16. Li K, Beetel R, Craelius W. Seeing an imaginary arm alters brain functions of amputees. In: HCI international: 17th international conference on human-computer interaction, Los Angeles; 2015.

    Google Scholar 

  17. Kim NH, Wininger M, Craelius W. Training grip control with a Fitts’ paradigm: a pilot study in chronic stroke. J Hand Ther. 2010;23(1):63–71; quiz 72.

    Article  PubMed  Google Scholar 

  18. Resnik L, Latlief G, Klinger SL, Sasson N, Walters LS. Do users want to receive a DEKA Arm and why? Overall findings from the Veterans Affairs Study to optimize the DEKA Arm. Prosthet Orthot Int. 2013;38:456–66.

    Article  PubMed  Google Scholar 

  19. Batula AM, Mark JA, Kim YE, Ayaz H. Comparison of brain activation during motor imagery and motor movement using fNIRS. Comput Intell Neurosci. 2017;2017:5491296.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boostani R, Moradi MH. Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol Meas. 2003;24(2):309–19.

    Article  PubMed  Google Scholar 

  21. Belter JT, Segil JL, Dollar AM, Weir RF. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J Rehabil Res Dev. 2013;50(5):599–617.

    Article  PubMed  Google Scholar 

  22. Bridges MM, Para MP, Mashner MJ. Control system architecture for the modular prosthetic limb. J Hopkins APL Tech Dig. 2011;30(3):217–22.

    Google Scholar 

  23. Castellini C, Artemiadis P. PNS-MI community. 2013. http://pnsinterfaces.wordpress.com/.

  24. Castellini C, Artemiadis P, Wininger M, Ajoudani A, Alimusaj M, Bicchi A, Caputo B, Craelius W, Dosen S, Englehart K, Farina D, Gijsberts A, Godfrey SB, Hargrove L, Ison M, Kuiken T, Markovic M, Pilarski PM, Rupp R, Scheme E. Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front Neurorobot. 2014;8:22.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chadwell A, Kenney L, Thies S, Galpin A, Head J. The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control. Front Neurorobot. 2016;10:7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chand GB, Dhamala M. Interactions between the anterior cingulate-insula network and the fronto-parietal network during perceptual decision-making. Neuroimage. 2017;152:381–9.

    Article  PubMed  Google Scholar 

  27. Connolly C. Prosthetic hands from touch bionics. Ind Robot. 2008;35(4):290–3.

    Article  Google Scholar 

  28. Craelius W. The bionic man: restoring mobility. Science. 2002;295(5557):1018–21.

    Article  CAS  PubMed  Google Scholar 

  29. Craelius W. A revolutionary upper-limb prosthesis. In: DARPA revolutionizing prosthetics workshop, Arlington; 2005.

    Google Scholar 

  30. Craig J, Korenczuk C, Kosinsky C, Newby N, Craelius W, Ma S, Escaldi S. Measuring joint ROM and stiffness with a cell phone. In: Association of Academic Physiatrists annual meeting, San Antonio; 2015.

    Google Scholar 

  31. Dorrance D. Artificial hand. United States; 1912.

    Google Scholar 

  32. Farina D, Jiang N, Rehbaum H, Holobar A, Graimann B, Dietl H, Aszmann OC. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng. 2014;22(4):797–809.

    Article  PubMed  Google Scholar 

  33. Hanger. Michael Angelo Hand. 2013. http://www.hanger.com/prosthetics/services/Technology/Pages/MichelangeloHand.aspx.

  34. Ison M, Artemiadis P. Enhancing practical multifunctional myoelectric applications through implicit motor control training systems. In: 36th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago; 2014.

    Google Scholar 

  35. Pirowska A, Wloch T, Nowobilski R, Plaszewski M, Hocini A, Menager D. Phantom phenomena and body scheme after limb amputation: a literature review. Neurol Neurochir Pol. 2014;48(1):52–9.

    Article  PubMed  Google Scholar 

  36. Yokoi H, Arieta AH, Katoh R, Yu WW, Watanabe I, Maruishi M. Mutual adaptation in a prosthetics application. Embodied Artif Intell. 2004;3139:146–59.

    Article  Google Scholar 

  37. Abboudi RL, Glass CA, Newby NA, Flint JA, Craelius W. A biomimetic controller for a multifinger prosthesis. IEEE Trans Rehabil Eng. 1999;7(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  38. Akhlaghi N, Baker CA, Lahlou M, Zafar H, Murthy KG, Rangwala HS, Kosecka J, Joiner WM, Pancrazio JJ, Sikdar S. Real-time classification of hand motions using ultrasound imaging of forearm muscles. IEEE Trans Biomed Eng. 2016;63(8):1687–98.

    Article  PubMed  Google Scholar 

  39. Nissler C, Mouriki N, Castellini C. Optical myography: detecting finger movements by looking at the forearm. Front Neurorobot. 2016;10:3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Willoch F, Rosen G, Tolle TR, Oye I, Wester HJ, Berner N, Schwaiger M, Bartenstein P. Phantom limb pain in the human brain: unraveling neural circuitries of phantom limb sensations using positron emission tomography. Ann Neurol. 2000;48(6):842–9.

    Article  CAS  PubMed  Google Scholar 

  41. Powell MA, Kaliki RR, Thakor NV. User training for pattern recognition-based myoelectric prostheses: improving phantom limb movement consistency and distinguishability. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):522–32.

    Article  PubMed  Google Scholar 

  42. Romkema S, Bongers RM, van der Sluis CK. Intermanual transfer in training with an upper-limb myoelectric prosthesis simulator: a mechanistic, randomized, pretest-posttest study. Phys Ther. 2013;93(1):22–31.

    Article  PubMed  Google Scholar 

  43. Wang JS, Sainburg RL. The dominant and nondominant arms are specialized for stabilizing different features of task performance. Exp Brain Res. 2007;178(4):565–70.

    Article  PubMed  Google Scholar 

  44. Morris T, Newby NA, Wininger M, Craelius W. Inter-limb transfer of learned ankle movements. Exp Brain Res. 2008;192(1):33–42.

    Article  PubMed  Google Scholar 

  45. Sainburg RL. Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res. 2002;142(2):241–58.

    Article  PubMed  Google Scholar 

  46. Sainburg RL, Kalakanis D. Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol. 2000;83(5):2661–75.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang W, Sainburg RL, Zatsiorsky VM, Latash ML. Hand dominance and multi-finger synergies. Neurosci Lett. 2006;409(3):200–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Resnik L, Borgia M, Latlief G, Sasson N, Smurr-Walters L. Self-reported and performance-based outcomes using DEKA Arm. J Rehabil Res Dev. 2014;51(3):351–62.

    Article  PubMed  Google Scholar 

  49. Alphonso AL, et al. Use of a virtual integrated environment in prosthetic limb development and phantom limb pain. In: Wiederhold BK, Riva G, editors. Annual review of cybertherapy and telemedicine 2012: Advanced technologies in the behavioral, social and neurosciences; 2012.

    Google Scholar 

  50. Ameri A, Scheme EJ, Kamavuako EN, Englehart KB, Parker PA. Real-time, simultaneous myoelectric control using force and position-based training paradigms. IEEE Trans Biomed Eng. 2014;61(2):279–87.

    Article  PubMed  Google Scholar 

  51. Mattar E. A survey of bio-inspired robotics hands implementation: new directions in dexterous manipulation. Robot Auton Syst. 2013;61(5):517–44.

    Article  Google Scholar 

  52. Natarajan GS, Wininger M, Kim NH, Craelius W. Relating biceps EMG to elbow kinematics during self-paced arm flexions. Med Eng Phys. 2011.

    Google Scholar 

  53. Newby N. DextraHand. 2011. www.dextrahand.org.

  54. Pylatiuk C, Doderlein L. “Bionic” arm prostheses. State of the art in research and development. Orthopade. 2006;35(11):1169.

    Article  CAS  PubMed  Google Scholar 

  55. Pylatiuk C, Schulz S, Doderlein L. Results of an Internet survey of myoelectric prosthetic hand users. Prosthet Orthot Int. 2007;31(4):362–70.

    Article  PubMed  Google Scholar 

  56. Resnik L, Klinger S. Attrition and retention in upper limb prosthetics research: experience of the VA home study of the DEKA arm. Disabil Rehabil Assist Technol. 2017;12(8):816–21.

    Article  PubMed  Google Scholar 

  57. Resnik L, Klinger SL, Etter K. The DEKA Arm: its features, functionality, and evolution during the Veterans Affairs Study to optimize the DEKA Arm. Prosthet Orthot Int. 2013.

    Google Scholar 

  58. Resnik LJ, Borgia ML, Acluche F. Perceptions of satisfaction, usability and desirability of the DEKA Arm before and after a trial of home use. PLoS One. 2017;12(6):e0178640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Scott TRD, Haugland M. Command and control interfaces for advanced neuroprosthetic applications. Neuromodulation. 2001;4(4):165–74.

    Article  CAS  PubMed  Google Scholar 

  60. Smit G, Bongers RM, Van der Sluis CK, Plettenburg DH. Efficiency of voluntary opening hand and hook prosthetic devices: 24 years of development? J Rehabil Res Dev. 2012;49(4):523–34.

    Article  PubMed  Google Scholar 

  61. Weir RF. The great divide - the human-machine interface: issues in the control of prostheses, manipulators, and other human machine systems. In: IEEE 29th annual northeast bioengineering conference; 2003.

    Google Scholar 

  62. Weir RF. Design of advanced prosthetic limb systems. In: Castelli VP, Troncossi M, editors. Grasping the future: advances in powered upper limb prosthetics. Sharjah: Bentham Science; 2012. p. 3–14.

    Google Scholar 

  63. Mayer RM, Garcia-Rosas R, Mohammadi A, Tan Y, Alici G, Choong P, Oetomo D. Tactile feedback in closed-loop control of myoelectric hand grasping: conveying information of multiple sensors simultaneously via a single feedback channel. Front Neurosci. 2020;14:348. https://doi.org/10.3389/fnins.2020.00348.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Craelius, W. (2022). Advancing Prosthetic Designs. In: Prosthetic Designs for Restoring Human Limb Function. Springer, Cham. https://doi.org/10.1007/978-3-030-31077-6_10

Download citation

Publish with us

Policies and ethics