Skip to main content

Biofilms: The Good and the Bad

  • Chapter
  • First Online:
Biofilms in Human Diseases: Treatment and Control

Abstract

Biofilms are well-structured, cooperating microbial communities adhered to various types of surfaces. Microbes forming biofilms secrete slimy extracellular polymeric substances (EPSs) which provide biofilms with their resistance against antibiotics. Biofilms have several advantages and disadvantages. Exploring the negative side of biofilms first—biofilm formation interferes in crucial processes like heat and mass transfer, fluid dynamics, and also causes bio-corrosion thereby increasing maintenance costs and decreasing the overall yields from plants. Bio-corrosion also increases the chances of bacterial adhesion and contamination of processed food products, dairy products, and brewing products. Biofilms affect the sea food and aquaculture industries by clogging cages and interfering with nutrient inflows. Biofilms have numerous harmful effects that are associated with the medical industry, such as infections associated with the insertion of tubes, catheters, and valves, as well as surgery. Considering the positive aspects of biofilms we note that the judicious use of biofilms can provide solutions to modern day problems. They can be effectively used for the bioremediation of soil and groundwater as well as being used to treat oil spills. They provide cost-effective alternatives in the mining industry in the form of bioleaching and biofilm-based bioreactors for municipal/industrial waste disposal. Biofilms can be used as biosensors for the reliable and quick detection of chemicals as well as in the treatment of contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abee T, Kovács A, Kuipers O, Van Der Veen S (2011) Biofilm formation and dispersal in Gram-positive bacteria. Curr Opin Biotechnol 22(2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Stewart P, Hozalski R (2016) Biofilm cohesive strength as a basis for biofilm recalcitrance: are bacterial biofilms overdesigned? Sage J 8(2):29–32

    Google Scholar 

  • Amin A (2009) Clinical and economic consequences of ventilator-associated pneumonia. Clin Infect Dis 49(1):S36–S43

    Article  PubMed  Google Scholar 

  • Auler M, Morreira D, Rodrigues F, Abr Ão M, Margarido P, Matsumoto F, Silva E, Silva B, Schneider R, Paula C (2010) Biofilm formation on intrauterine devices in patients with recurrent vulvovaginal candidiasis. Med Mycol 48(1):211–216

    Article  CAS  PubMed  Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra R (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70(5):518–524

    Article  CAS  PubMed  Google Scholar 

  • Bassler B (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2(6):582–587

    Article  CAS  PubMed  Google Scholar 

  • Bauer T, Torres A, Ferrer R, Heyer C, Schultze Werninghaus G, Rasche K (2002) Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens. Monaldi Arch Chest Dis 57(1):84–87

    Google Scholar 

  • Beyenal H, Sani R, Peyton B, Dohnalkova A, Amonette J, Lewandowski Z (2004) Uranium immobilization by sulfate-reducing biofilms. Environ Sci Technol 38(7):2067–2074

    Article  CAS  PubMed  Google Scholar 

  • Boon N, De Gelder L, Lievens H, Siciliano S, Top E, Verstraete W (2002) Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. Environ Sci Technol 36(21):4698–4704

    Article  CAS  PubMed  Google Scholar 

  • Bryers J (2008) Medical biofilms. Biotechnol Bioeng 100(1):1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, De La Fuente L, Arias C (2013) Biofilm formation by the fish pathogen Flavobacterium columnare: development and parameters affecting surface attachment. Appl Environ Microbiol 79(18):5633–5642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo A, Woodward J, Call D, Nero L (2017) Listeria monocytogenes in food-processing facilities, food contamination, and human listeriosis: the Brazilian scenario. Foodborne Pathog Dis 14(11):623–636

    Article  PubMed  Google Scholar 

  • Cogan N, Keener J (2004) The role of the biofilm matrix in structural development. Math Med Biol 21(2):147–166

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Costerton J, Lewandowski Z, Caldwell D, Korber D, Lappin-Scott H (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745

    Article  CAS  PubMed  Google Scholar 

  • Costerton J, Cheng K, Geesey G, Ladd T, Nickel J, Dasgupta M, Marrie T (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464

    Article  CAS  Google Scholar 

  • Costerton J (1999) Introduction to biofilm. Int J Antimicrob Agents 11:217–221

    Article  CAS  PubMed  Google Scholar 

  • Characklis W, Marshal K (1990) Biofilms. Wiley and Sons, New York

    Google Scholar 

  • Das S, Dash H (2014) Microbial bioremediation: a potential tool for restoration of contaminated areas. In: Das S (ed) Microbial biodegradation and bioremediation, 1st edn. Elsevier, Oxford, pp 1–21

    Google Scholar 

  • Dasgupta D, Ghosh R, Sengupta T (2013) Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol, vol 2013, Article ID 250749, p 13. https://doi.org/10.5402/2013/250749

  • De Weger L, van der Vlugt C, Wijfjes A, Bakker P, Schippers B, Lugtenberg B (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169(6):2769–2773

    Article  PubMed  PubMed Central  Google Scholar 

  • Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon J (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62(6):1908–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan R (2001) Biofilms and device-associated infections. Emerg Inf Dis 7(2):277–281

    Article  CAS  Google Scholar 

  • Donlan R (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Donlan R (2008) Biofilms on central venous catheters: is eradication possible? Curr Top Microbiol Immunol 322:133–161

    CAS  PubMed  Google Scholar 

  • Dunne W (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmiston C Jr, McBain A, Roberts C, Leaper D (2015) Clinical and microbiological aspects of biofilm-associated surgical site infections. Adv Exp Med Biol 830:47–67

    Article  PubMed  Google Scholar 

  • Engelhardt M, Daly K, Swannell R, Head I (2001) Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol 90(2):237–247

    Google Scholar 

  • Fanning S, Mitchell A (2012) Fungal biofilms. PLOS Pathog 8(4):e1002585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher M (1980) Microbial adhesion to surfaces. Ellis Horwood, Chichester

    Google Scholar 

  • Ganesh C, Anand S (1998) Significance of microbial biofilms in food industry a review. Int J Food Microbiol 42(1–2):9–27

    Google Scholar 

  • Garrett T, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton J, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Hentzer M, Eberl L, Givskov M (2005) Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofouling 2(1):37–61

    Google Scholar 

  • Hobley L, Harkins C, MacPhee C, Stanley-Wall N (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39(5):649–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jespersen L, Jakobsen M (1996) Specific spoilage organisms in breweries and laboratory media for their detection. Int J Food Microbiol 33(1):139–155

    Article  CAS  PubMed  Google Scholar 

  • Joubert L, Wolfaardt G, Botha A (2006) Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 52(2):187–197

    Article  PubMed  Google Scholar 

  • Joutey N, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69

    CAS  PubMed  Google Scholar 

  • Kathju S, Nistico L, Hall-Stoodley L, Post J, Ehrlich G, Stoodley P (2009) Chronic surgical site infection due to suture-associated polymicrobial biofilm. Surg Infect (Larchmt) 10(5):457–461

    Article  Google Scholar 

  • Koch B, Worm J, Jensen L, Hojberg O, Ole Nybroe O (2001) Carbon limitation induces s-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 67:3363–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokare C, Chakarborty S, Khopade A, Mahadik K (2009) Biofilm: importance and applications. Indian J Biotechnol 8:159–168

    CAS  Google Scholar 

  • Kolter R (2010) Biofilms in lab and nature: a molecular geneticist’s voyage to microbial ecology. Int Microbiol 13(1):1–7

    PubMed  Google Scholar 

  • López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):a000398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancl K (2009) Wastewater treatment principles and regulations. [online] Ohioline. Available at https://ohioline.osu.edu/factsheet/aex-768 Accessed 30 Nov 2018

  • Masahiro OM, Sato I, Cho S, Iwata H, Nishio T, Dubnau D, Sakagami Y (2005) Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat Chem Biol 1:23–24

    Article  CAS  Google Scholar 

  • Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 171:217–226

    Article  CAS  PubMed  Google Scholar 

  • Mizan M, Jahid I, Ha S (2015) Microbial biofilms in seafood: a food-hygiene challenge. Food Microbiol 49:41–55

    Article  CAS  PubMed  Google Scholar 

  • Niveditha S, Pramodhini S, Umadevi S, Kumar S, Stephen S (2012) The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J Clin Diagn Res 6(9):1478–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen P, Botyanszki Z, Tay P, Joshi N (2014) Programmable biofilm-based materials from engineered curli nanofibres. Nat Commun vol 5, article no 4945

    Google Scholar 

  • Orell A, Schopf S, Randau L, Vera M (2017) Biofilm lifestyle of thermophile and Acidophile Archaea. In: Witzany G (ed) Biocommunication of Archaea, 1st edn. Springer, Switzerland, pp 133–146

    Chapter  Google Scholar 

  • Prince R (1997) Bioremediation of marine oil spills. Trends Biotechnol 15(5):158–160

    Article  CAS  Google Scholar 

  • Qureshi N, Annous B, Ezeji T, Karcher P, Maddox I (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez P, Ferrer M, Torres A (2007) Prevention measures for ventilator-associated pneumonia: a new focus on the endotracheal tube. Curr Opin Inf Dis 20(2):190–197

    Article  Google Scholar 

  • Rossi F, De Philippis R (2015) Role of cyanobacterial Exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5(2):1218–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutter P, Vincent B (1980) Microbial adhesion to surfaces. Ellis Horwood, London

    Google Scholar 

  • Sachs J, Hollowed A (2012) The origins of cooperative bacterial communities. mBio 3(3):e00099–12

    Google Scholar 

  • Sauer F, Remaut H, Hultgren H, Waksman G (2004) Fiber assembly by the chaperone-usher pathway. Biochem Biophys Acta 1694(1–3):259–267

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Paul D, Jain R (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397

    Article  CAS  PubMed  Google Scholar 

  • Srey S, Jahid I, Sang-DoHa S (2013) Biofilm formation in food industries: a food safety concern. Food Control 31(2):572–585

    Article  Google Scholar 

  • Sutherland I (1999) Polysaccharases for microbial exopolysaccharides. Carbohyd Polym 38(4):319–328

    Article  CAS  Google Scholar 

  • Tarver T (2016) Biofilms: a threat to food safety. [online] IFT.org. Available at http://www.ift.org/Knowledge-Center/Read-IFT-Publications/Science-Reports/Scientific-Status-Summaries/Editorial/Biofilms.aspx. Accessed 30 Nov 2018

  • Trakoo N (2003) Biofilm and food industry. J Sci Technol 25:807–815

    Google Scholar 

  • Tyagi M, da Fonseca M, de Carvalho C (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Vert M, Doi Y, Hellwich K, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84(2):377–410

    Article  CAS  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11(3):157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Eiff C, Jansen B, Kohnen W, Becker K (2005) Infections associated with medical devices. Drugs 65(2):179–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somali Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S.K., Sanyal, S. (2019). Biofilms: The Good and the Bad. In: Kumar, S., Chandra, N., Singh, L., Hashmi, M., Varma, A. (eds) Biofilms in Human Diseases: Treatment and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-30757-8_2

Download citation

Publish with us

Policies and ethics