Skip to main content

Biomedical Engineering Fundamentals

  • Chapter
  • First Online:
Intelligent Internet of Things

Abstract

This chapter introduces the concept of bioelectricity and biomechanics. The descriptions of several specific biosensors are also included in this chapter. The main aim of this chapter is to provide an interdisciplinary work related to measurement, analysis, and classification of biomedical signals using signal processing techniques for clinical diagnosis purpose. Some applications for the diagnosis of various diseases are also included in this chapter.

If it weren’t for electricity, we’d all be watching television by candlelight.

George Gobel

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Enderle, J. Brozino, Introduction to Biomedical Engineering (Academic Press, Burlington, 2012)

    Google Scholar 

  2. O.G. Martinsen, S. Grimnes, Bioimpedance and Bioelectricity Basics (Academic Press, London, 2011)

    Google Scholar 

  3. R. Plonsey, R.C. Barr, Bioelectricity: a Quantitative Approach (Springer Science & Business Media, New York, 2007)

    MATH  Google Scholar 

  4. A. Winter, Biomechanics and Motor Control of Human Movement (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  5. G.S. Firestein, R. Budd, S.E. Gabriel, I.B. McInnes, J.R. O’Dell, Kelley’s Textbook of Rheumatology E-Book (Elsevier Health Sciences, London, 2012)

    Google Scholar 

  6. A.P. Turner, J.C. Pickup, Diabetes mellitus: biosensors for research and management. Biosensors 1(1), 85–115 (1985)

    Article  Google Scholar 

  7. L.J. Blum, P.R. Coulet, Biosensor Principles and Applications (M. Dekker, New York, 1991)

    Google Scholar 

  8. T. Vo-Dinh, B. Cullum, Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J. Anal. Chem. 366(6–7), 540–551 (2000)

    Article  Google Scholar 

  9. J.-Y. Yoon, Introduction to Biosensors: from Electric Circuits to Immunosensors (Springer, Cham, 2016)

    Book  Google Scholar 

  10. A.V. Oppenheim, A.S. Willsky, S.H. Nawab, Signals and Systems, 2nd edn. (Prentice Hall, Upper Saddle River, 1997)

    Google Scholar 

  11. S. Mukhopadhyay. NPTEL (2016). [Online]. http://textofvideo.nptel.ac.in/108105088/lec7.pdf

  12. S.R. Devasahayam, Signals and Systems in Biomedical Engineering (Springer US, Boston, 2000)

    Book  Google Scholar 

  13. J. Schroeder, Signal processing via Fourier-Bessel series expansion. Digit. Signal Process. 3(2), 112 (1993)

    Article  Google Scholar 

  14. S. Gupta, K.H. Krishna, R.B. Pachori, M. Tanveer, Fourier-Bessel series expansion based technique for automated classification of focal and non-focal EEG signals, in International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–6

    Google Scholar 

  15. A.S. Hood, R.B. Pachori, V.K. Reddy, P. Sircar, Parametric representation of speech employing multi-component AFM signal model. Int. J. Speech Technol. 18(3), 287–303 (2015)

    Article  Google Scholar 

  16. R.B. Pachori, Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process. 14, 2008 (2008)

    Google Scholar 

  17. R.B. Pachori, P. Sircar, EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Process. 88(2), 415–420 (2008)

    Article  MATH  Google Scholar 

  18. R.B. Pachori, P. Sircar, A new technique to reduce cross terms in the Wigner distribution. Digit. Signal Process. 17(2), 466–474 (2007)

    Article  Google Scholar 

  19. R.B. Pachori, P. Sircar, Analysis of multicomponent AM-FM signals using FB-DESA method. Digit. Signal Process. 20(1), 42–62 (2010)

    Article  Google Scholar 

  20. R.B. Pachori, P. Avinash, K. Shashank, R. Sharma, U.R. Acharya, Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals. Expert Syst. Appl. 42(9), 4567–4581 (2015)

    Article  Google Scholar 

  21. S. Sood, M. Kumar, R.B. Pachori, U.R. Acharya, Application of empirical mode decomposition–based features for analysis of normal and CAD heart rate signals. J. Mech. Med. Biol. 16(1), 1640002 (2016)

    Article  Google Scholar 

  22. P. Jain, R.B. Pachori, Time-order representation based method for epoch detection from speech signals. J. Intell. Syst. 21(1), 79–95 (2012)

    Google Scholar 

  23. R.B. Pachori, M. Kumar, P. Avinash, K. Shashank, U.R. Acharya, An improved online paradigm for screening of diabetic patients using RR-interval signals. J. Mech. Med. Biol. 16(1), 1640003 (2016)

    Article  Google Scholar 

  24. R.B. Pachori, P. Sircar, Non-stationary Signal Analysis: Methods Based on Fourier-Bessel Representation (LAP LAMBERT Academic Publishing, Germany, 2010)

    Google Scholar 

  25. A. Bhattacharyya, L. Singh, R.B. Pachori, Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digit. Signal Process. 78, 185–196 (2018)

    Article  Google Scholar 

  26. R.G. Andrzejak et al., Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64 6, 061907 (2001)

    Article  Google Scholar 

  27. M.V. Gils, Lecture 01: Introduction and recapitulation of essential techniques (2015). [Online]. https://mycourses.aalto.fi/course/view.php?id=9367&lang=fi

  28. B. Mulgrew, P. Grant, J. Thompson, Digital Signal Processing: Concepts and Applications (Macmillan Education London, 1999)

    Google Scholar 

  29. V. Singh, K. Veer, R. Sharma, S. Kumar, Comparative study of FIR and IIR filters for the removal of 50 Hz noise from EEG signal. Int. J. Biomed. Eng. Technol. 22(3), 250–257 (2016)

    Article  Google Scholar 

  30. K. Najarian, R. Splinter, Biomedical Signal and Image Processing (CRC Press, Boca Raton, 2005)

    Book  Google Scholar 

  31. A.L. Goldberger et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  32. M. Tangermann et al., Review of the BCI competition IV. Front. Neurosci. 6, 55 (2012)

    Article  Google Scholar 

  33. R.M. Rangayyan, Biomedical Signal Analysis, vol 33 (Wiley, Hoboken, 2015)

    Google Scholar 

  34. E. Kaniusas, Biomedical Signals and Sensors I (Springer, Berlin, Heidelberg, 2012)

    Book  Google Scholar 

  35. E. Kaniusas, Biomedical Signals and Sensors II (Springer, Berlin, Heidelberg, 2015)

    Book  Google Scholar 

  36. G. Keiser, Biophotonics – Concepts to Applications (Springer Singapore, Singapore, 2016)

    Book  Google Scholar 

  37. M. Kutz, Standard Handbook of Biomedical Engineering and Design (McGraw-Hill, New York, 2003)

    Google Scholar 

  38. A. Phinyomark, P. Phukpattaranont, C. Limsakul, Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 39(8), 7420–7431 (2012)

    Article  Google Scholar 

  39. T.N.S. Tengku Zawawi et al., A review of electromyography signal analysis techniques for musculoskeletal disorders. Indones. J. Electr. Eng. Comput. Sci. 11(3), 1136 (2018)

    Article  Google Scholar 

  40. B. Boashash, Time-Frequency Signal Analysis and Processing: a Comprehensive Reference (Academic Press, Amsterdam, 2015)

    Google Scholar 

  41. N.E. Huang, Hilbert-Huang Transform and Its Applications, vol 16 (World Scientific, Hackensack, 2014)

    Book  MATH  Google Scholar 

  42. C.L. Nikias, J.M. Mendel, Signal processing with higher-order spectra. IEEE Signal Process. Mag. 10(3), 10–37 (1993)

    Article  Google Scholar 

  43. C.L. Phillips, J.M. Parr, E.A. Riskin, Signals, Systems, and Transforms (Prentice Hall, Upper Saddle River, 1995)

    MATH  Google Scholar 

  44. S. Mukhopadhyay, P. Sircar, Parametric modelling of ECG signal. Med. Biol. Eng. Comput. 34(2), 171–174 (1996)

    Article  Google Scholar 

  45. R.V. Andreao, B. Dorizzi, J. Boudy, ECG signal analysis through hidden Markov models. IEEE Trans. Biomed. Eng. 53(8), 1541–1549 (2006)

    Article  Google Scholar 

  46. P.E. McSharry, G.D. Clifford, L. Tarassenko, L.A. Smith, A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50(3), 289–294 (2003)

    Article  Google Scholar 

  47. J.-C. Nunes, A. Nait-Ali, Hilbert transform-based ECG modeling. Biomed. Eng. 39(3), 133–137 (2005)

    Article  Google Scholar 

  48. J. Pardey, S. Roberts, L. Tarassenko, A review of parametric modelling techniques for EEG analysis. Med. Eng. Phys. 18(1), 2–11 (1996)

    Article  Google Scholar 

  49. O.A. Elsayed, A. Eldeib, F. Elhefnawi, Parametric modeling of ICTAL epilepsy EEG signal using Prony method. Int. J. Comput. Sci. Softw. Eng. (IJCSSE) 3(1), 86–89 (2014)

    Google Scholar 

  50. D. Graupe, K.H. Kohn, A. Kralj, S. Basseas, Patient controlled electrical stimulation via EMG signature discrimination for providing certain paraplegics with primitive walking functions. J. Biomed. Eng. 5(3), 220–226 (1983)

    Article  Google Scholar 

  51. M.H. Sherif, R.J. Gregor, J. Lyman, Effects of load on myoelectric signals: the ARIMA representation. IEEE Trans. Biomed. Eng. 5, 411–416 (1981)

    Article  Google Scholar 

  52. A. Iwata, N. Suzumura, K. Ikegaya, Pattern classification of the phonocardiogram using linear prediction analysis. Med. Biol. Eng. Comput. 15(4), 407–412 (1977)

    Article  Google Scholar 

  53. A. Iwata, N. Ishii, N. Suzumura, K. Ikegaya, Algorithm for detecting the first and the second heart sounds by spectral tracking. Med. Biol. Eng. Comput. 18(1), 19–26 (1980)

    Article  Google Scholar 

  54. Z. Moussavi, Fundamentals of respiratory sounds and analysis. Synth. Lect. Biomed. Eng. 1(1), 1–68 (2006)

    Article  MathSciNet  Google Scholar 

  55. R.R. Sharma, A. Kumar, R.B. Pachori, U.R. Acharya, Accurate automated detection of congestive heart failure using eigenvalue decomposition based features extracted from HRV signals. Biocybern. Biomed. Eng. 39, 312 (2019)

    Article  Google Scholar 

  56. M. Kumar, R.B. Pachori, U.R. Acharya, Use of accumulated entropies for automated detection of congestive heart failure in flexible analytic wavelet transform framework based on short-term HRV signals. Entropy 19(3), 92 (2017)

    Article  Google Scholar 

  57. S. Patidar, R.B. Pachori, Classification of heart disorders based on tunable-Q wavelet transform of cardiac sound signals, in Chaos Modeling and Control Systems Design, (Springer, Cham, 2015), pp. 239–264

    Google Scholar 

  58. M. Kumar, R.B. Pachori, U.R. Acharya, Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform. Biocybern. Biomed. Eng. 38(3), 564–573 (2018)

    Article  Google Scholar 

  59. M. Kumar, R.B. Pachori, U.R. Acharya, Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 19(9), 488 (2017)

    Article  Google Scholar 

  60. M. Kumar, R.B. Pachori, U.R. Acharya, Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed. Signal Process. Control 31, 301–308 (2017)

    Article  Google Scholar 

  61. M. Kumar, R.B. Pachori, U.R. Acharya, An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals. Expert Syst. Appl. 63, 165–172 (2016)

    Article  Google Scholar 

  62. V. Bajaj, R.B. Pachori, Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16(6), 1135–1142 (2012)

    Article  Google Scholar 

  63. R. Sharma, R.B. Pachori, Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 42(3), 1106–1117 (2015)

    Article  Google Scholar 

  64. R.B. Pachori, S. Patidar, Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Methods Prog. Biomed. 113(2), 494–502 (2014)

    Article  Google Scholar 

  65. R. Sharma, R.B. Pachori, U.R. Acharya, Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17(2), 669–691 (2015)

    Article  Google Scholar 

  66. V. Joshi, R.B. Pachori, A. Vijesh, Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 9, 1–5 (2014)

    Article  Google Scholar 

  67. V. Bajaj, R.B. Pachori, Automatic classification of sleep stages based on the time-frequency image of EEG signals. Comput. Methods Prog. Biomed. 112(3), 320–328 (2013)

    Article  Google Scholar 

  68. R. Sharma, R.B. Pachori, A. Upadhyay, Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput. & Applic. 28(10), 2959–2978 (2017)

    Article  Google Scholar 

  69. A. Subasi, M. Yilmaz, H.R. Ozcalik, Classification of EMG signals using wavelet neural network. J. Neurosci. Methods 156(1–2), 360–367 (2006)

    Article  Google Scholar 

  70. E. Gokgoz, A. Subasi, Comparison of decision tree algorithms for EMG signal classification using DWT. Biomed. Signal Process. Control 18, 138–144 (2015)

    Article  Google Scholar 

  71. A. Subasi, M.K. Kiymik, Muscle fatigue detection in EMG using time–frequency methods, ICA and neural networks. J. Med. Syst. 34(4), 777–785 (2010)

    Article  Google Scholar 

  72. M. Gonzalez-Izal et al., EMG spectral indices and muscle power fatigue during dynamic contractions. J. Electromyogr. Kinesiol. 20(2), 233–240 (2010)

    Article  Google Scholar 

  73. A. Nishad, A. Upadhyay, R.B. Pachori, U.R. Acharya, Automated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signals. Futur. Gener. Comput. Syst. 93, 96–110 (2019)

    Article  Google Scholar 

  74. R.B. Pachori, D. Hewson, Assessment of the effects of sensory perturbations using Fourier–Bessel expansion method for postural stability analysis. J. Intell. Syst. 20(2), 167–186 (2011)

    Google Scholar 

  75. G.F. Harris, S.A. Riedel, D. Matesi, P. Smith, Standing postural stability assessment and signal stationarity in children with cerebral palsy. IEEE Trans. Rehabil. Eng. 1(1), 35–42 (1993)

    Article  Google Scholar 

  76. R.B. Pachori, D. Hewson, H. Snoussi, J. Duchêne, Postural time-series analysis using empirical mode decomposition and second-order difference plots, in International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), 2009, pp. 537–540

    Google Scholar 

  77. M. Sharma, P. Sharma, R.B. Pachori, V.M. Gadre, Double density dual-tree complex wavelet transform-based features for automated screening of knee-joint vibroarthrographic signals, in Machine Intelligence and Signal Analysis, (Springer, Singapore, 2009), pp. 279–290

    Google Scholar 

  78. M. Merino, O. Rivera, I. Gómez, A. Molina, E. Dorronzoro, A method of EOG signal processing to detect the direction of eye movements, in First International Conference on Sensor Device Technologies and Applications (SENSORDEVICES), 2010, pp. 100–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pachori, R.B., Gupta, V. (2020). Biomedical Engineering Fundamentals. In: Firouzi, F., Chakrabarty, K., Nassif, S. (eds) Intelligent Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-30367-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30367-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30366-2

  • Online ISBN: 978-3-030-30367-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics