Skip to main content

Recent Advances on Self-incompatibility in Almond: A Glance at Genomic and Transcriptomic Levels

  • Chapter
  • First Online:
The Almond Tree Genome

Abstract

Self-incompatibility (SI) systems are genetically controlled pollen–pistil interactions that allow the rejection of self-pollen (Nettancourt, Sex Plant Reprod 10:185–199, 1997). Based on the association with floral polymorphism, SI can be classified into two types: heteromorphic and homomorphic. The heteromorphic SI system, with two or three incompatibility types due to different positions of flower parts such as distyly and tristyly, whereas the homomorphic SI system, operates to inhibit self-fertilization regardless of flower morphology with many different incompatibility systems (Charlesworth et al., New Phytol 168:61–69, 2005; Đorđević et al., Genetika 46:411–418, 2014). There are two types of homomorphic SI: sporophytic self-incompatibility (SSI) and gametophytic self-incompatibility (GSI) (Fig. 1). In SSI, the genotype of the diploid parental plant (sporophyte) that acts as the pollen donor determines the incompatibility type (Hiscock and Tabah, Philos Trans R Soc Lond B Biol Sci 358:1037–1045, 2003), and in GSI, the genotype of the haploid pollen itself (gametophyte) determines the incompatibility type. GSI is the most common SI system in the plant kingdom and can be found in Solanaceae, Rosaceae and Plantaginaceae. Almond (Prunus dulcis) is a predominantly out-crossing species, with most cultivars which have been identified as self-incompatible. A few almond cultivars are known to be self-fertile. This phenotype has been attributed to a dominant S-RNase allele, Sf (Grasselly and Olivier, Ann Amélio Plantes 26:107–113, 1976; Socias i Company, Plant breeding reviews, vol 8. Wiley, New York, 1990) or Sfi (Sf-inactive) (Kodad and Socias i Company, Int Soc Hortic Sci (ISHS) 421–424, 2009). Due to poor transcription, plants with the Sf allele seem to lack the active Sf-RNase (Fernández i Martí et al., Sci Hortic 125:685–691, 2010), which arrest the growth of Sf pollen tubes. However, the plants with the Sfa (Sf-active) allele express an active S-RNase and confer SI (Kodad et al., J Am Soc Hortic Sci 134:221–227, 2009). In spite of their contrasting phenotypes, the Sfi- and Sfa-RNase alleles have identical nucleotide sequences and are linked with identical SFB alleles (Fernández i Martí et al., Sci Hortic 125:685–691, 2010). The Sfi and Sfa alleles are differed epigenetically (Fernández i Martí et al., Plant Mol Biol 86:681–689, 2014) by the methylation of a single nucleotide upstream of the coding sequence of the S-RNase, and this variation may determine whether the Sf-RNase allele is expressed. In 2015 Kodad et al. confirmed this experimentally and reported that the plants with SfiSfa heterozygotes were fully self-incompatible probably due to their Sfa-RNase arresting the growth of both the Sfi and Sfa pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar B, Vieira J, Cunha AE, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP (2015) Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus. PLoS ONE 10 (5):e0126138. https://doi.org/10.1371/journal.pone.0126138

  • Akagi T, Henry IM, Morimoto T, Tao R (2016) Insights into the Prunus-specific S-RNase-Based self- incompatibility system from a genome-wide analysis of the evolutionary radiation of S locus- related F-box genes. Plant Cell Physiol 57(6):1281–1294. https://doi.org/10.1093/pcp/pcw077

  • Bošković R, Tobutt K, Ortega E, Sutherland B, Godini A (2007) Self-(in)compatibility of the almonds P. dulcis and P. webbii: detection and cloning of ‘wild-type Sf’ and new self-compatibility alleles encoding inactive S-RNases. Mol Gen Genom 278(6):665–676. https://doi.org/10.1007/s00438-007-0283-4

  • Bošković R, Tobutt KR, Batlle I, Duval H (1997) Correlation of ribonuclease zymograms and incompatibility genotypes in almond. Euphytica 97(2):167–176. https://doi.org/10.1023/a:1003030913308

    Article  Google Scholar 

  • Chalivendra SC, Lopez-Casado G, Kumar A, Kassenbrock AR, Royer S, Tovar-Mèndez A, Covey PA, Dempsey LA, Randle AM, Stack SM, Rose JKC, McClure B, Bedinger PA (2012) Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii. J Exp Botany 64(1):265–279. https://doi.org/10.1093/jxb/ers324

    Article  CAS  Google Scholar 

  • Channuntapipat C, Wirthensohn M, Ramesh S, Batlle I, Arus P, Sedgley M, Collins G (2003) Identification of incompatibility genotypes in almond (Prunus dulcis Mill.) using specific primers based on the introns of the S-alleles. Plant Breed 122:164–168

    Article  CAS  Google Scholar 

  • Charlesworth D, Vekemans X, Castric V, Glemin S (2005) Plant self-incompatibility systems: a molecular evolutionary perspective. New Phytol 168(1):61–69. https://doi.org/10.1111/j.1469-8137.2005.01443.x

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Meng D, Gu Z, Li W, Yuan H, Duan X, Yang Q, Li Y, Li T (2018) SLFL genes participate in the ubiquitination and degradation reaction of S-RNase in self-compatible peach. Front Plant Sci 9(227). https://doi.org/10.3389/fpls.2018.00227

  • Cunningham S, Fournier A, Neave M, Le Feuvre D (2015) Improving spatial arrangement of honeybee colonies to avoid pollination shortfall and depressed fruit set. J Appl Ecol 53. https://doi.org/10.1111/1365-2664.12573

  • Currò S, La Malfa S, Distefano G, Long G, Sottile F, Gentile A (2015) Analysis of S-allele genetic diversity in Sicilian almond germplasm comparing different molecular methods. Plant Breed 134(6):713–718. https://doi.org/10.1111/pbr.12318

  • De Franceschi P, Pierantoni L, Dondini L, Grandi M, Sanzol J, Sansavini S (2011) Cloning and mapping multiple S-locus F-box genes in European pear (Pyrus communis L.). Tree Genet Genomes 7(2):231–240. https://doi.org/10.1007/s11295-010-0327-5

  • De Nettancourt D (1997) Incompatibility in angiosperms. Sex Plant Reprod 10(4):185–199

    Article  Google Scholar 

  • Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling T (2012) A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biol 12(1):7

    Article  CAS  PubMed  Google Scholar 

  • Đorđević M, Cerović R, Radičević S, Nikolić D (2014) Incompatible pollen tubes in the plum style and their impact on fertilization success. Genetika 46(2):411–418

    Article  Google Scholar 

  • Eddy D (2011) Bee-free almond tree. Am Fruit Grower 131(10)

    Google Scholar 

  • Entani T, Iwano M, Shiba H, Che F-S, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8(3):203–213. https://doi.org/10.1046/j.1365-2443.2003.00626.x

    Article  CAS  PubMed  Google Scholar 

  • Felipe A, Socias R (1987) Aylés, Guarä, and Moncayö almonds. HortSci 22(5):961–962

    Article  Google Scholar 

  • Fernández i Martí À, Hanada T, Alonso JM, Yamane H, Tao R, Socias i Company R (2010) The almond Sf haplotype shows a double expression despite its comprehensive genetic identity. Sci Hortic 125(4):685–691. https://doi.org/10.1016/j.scienta.2010.05.024

  • Fernández i Marti Á, Wirthensohn M, Alonso J, Socias i Company R, Hrmova M (2012) Molecular modelling of S-RNases involved in almond self-incompatibility. Frontiers Plant Sci 3. https://doi.org/10.3389/fpls.2012.00139

  • Fernández i Martí A, Gradziel T, Socias i Company R (2014) Methylation of the Sf locus in almond is associated with S-RNase loss of function. Plant Mol Biol 86(6):681–689. https://doi.org/10.1007/s11103-014-0258-x

  • Fox NK, Brenner SE, Chandonia JM (2014) SCOPe: structural classification of proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42:D304–D309. https://doi.org/10.1093/nar/gkt1240

  • Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vazquez-Santana S, Kim S, Phillips TE, Cruz-Garcia F, McClure B (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439(7078):805–810. https://doi.org/10.1038/nature04491

    Article  CAS  PubMed  Google Scholar 

  • Goldway M, Zisovich A, Raz A, Stern R (2008) Understanding the gametophytic self-incompatibility system and its impact on European pear (Pyrus communis L.) cultivation. Acta Hortic

    Google Scholar 

  • Gómez EM, Buti M, Sargent DJ, Dicenta F, Ortega E (2019) Transcriptomic analysis of pollen-pistil interactions in almond (Prunus dulcis) identifies candidate genes for components of gametophytic self-incompatibility. Tree Genet Genomes 15(4):53. https://doi.org/10.1007/s11295-019-1360-7

    Article  Google Scholar 

  • Gómez EM, Dicenta F, Ortega E (2014) Characterization of the region between S-RNase and SFB genes in almond selections with the Sf-haplotype but different incompatibility phenotype. ActaHort pp 91–94. https://doi.org/10.17660/ActaHortic.2014.1028.13

  • Gómez EM, Dicenta F, Martínez-García PJ, Ortega E (2015) iTRAQ-based quantitative proteomic analysis of pistils and anthers from self-incompatible and self-compatible almonds with the Sf haplotype. Mol Breed 35(5):1–14. https://doi.org/10.1007/s11032-015-0314-5

    Article  CAS  Google Scholar 

  • Goonetilleke SN, Croxford AE, March TJ, Wirthensohn MG, Hrmova M, Mather DE (2020) Variation among S-locus haplotypes and among stylar RNases in almond. Sci Reports 10(1):583. https://doi.org/10.1038/s41598-020-57498-6

    Article  CAS  Google Scholar 

  • Gradziel TM (2009) Almond (Prunus dulcis) breeding. In: Mohan Jain S, Priyadarshan PM (eds) Breeding plantation tree crops: temperate species. Springer New York, USA, pp 1–31. https://doi.org/10.1007/978-0-387-71203-1_1

  • Gradziel TM, Martínez-Gómez P (2013) Almond breeding. In: Janick J (ed) Plant breeding reviews. Wiley, USA, vol 37, pp 207–258. https://doi.org/10.1002/9781118497869.ch4

  • Gradziel T, Lampinen B, Niederholzer F, Viveros M (2013) ‘Sweetheart’ Almond: a fully cross-compatible pollenizer for the early ‘Nonpareil’ bloom that exhibits very high ‘Marcona’-type kernel quality. HortSci 48(10):1320. https://doi.org/10.21273/hortsci.48.10.1320

    Article  Google Scholar 

  • Grasselly C, Olivier G (1976) Mise évidence de quelques types autocompatibles parmi les cultivars d’amandier (P. amygdalus Batsch) de la population des Pouilles. Ann Amélio Plantes 26:107–113

    Google Scholar 

  • Gu C, Wu J, Zhang S-J, Yang Y-N, Wu H-Q, Tao S-T, Zhang S-L (2012) Characterization of the S-RNase genomic DNA allele sequence in Prunus speciosa and P. pseudocerasus. Sci Hortic 144:93–101. https://doi.org/10.1016/j.scienta.2012.06.041

    Article  CAS  Google Scholar 

  • Hafizi A, Shiran B, Maleki B, Imani A, Banović B (2013) Identification of new S-RNase self- incompatibility alleles and characterization of natural mutations in Iranian almond cultivars. Trees 27(3):497–510. https://doi.org/10.1007/s00468-012-0803-7

  • Halász J, Fodor Á, Pedryc A, Hegedüs A (2010) S-genotyping of eastern European almond cultivars: identification and characterization of new (S36–S39) self-incompatibility ribonuclease alleles. Plant Breed 129(2):227–232. https://doi.org/10.1111/j.1439-0523.2009.01686.x

    Article  CAS  Google Scholar 

  • Halász J, Kodad O, Hegedűs A (2014) Identification of a recently active Prunus-specific non-autonomous Mutator element with considerable genome shaping force. Plant J 79(2):220–231. https://doi.org/10.1111/tpj.12551

    Article  CAS  PubMed  Google Scholar 

  • Hauck NR, Ikeda K, Tao R, Iezzoni AF (2006) The mutated S1-haplotype in sour cherry has an altered S-haplotype-specific F-box protein gene. J Heredity 97(5):514–520. https://doi.org/10.1093/jhered/esl029

    Article  CAS  Google Scholar 

  • Hiscock SJ, Tabah DA (2003) The different mechanisms of sporophytic self–incompatibility. Philos Trans R Soc Lond B Biol Sci 358(1434):1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Igic B, Ushijima K, Yamane H, Hauck N, Nakano R, Sassa H, Iezzoni A, Kohn J, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex Plant Reprod 16(5):235–243. https://doi.org/10.1007/s00497-003-0200-x

    Article  CAS  Google Scholar 

  • Kafkas S, Khodaeiaminjan M, Güney M, Kafkas E (2015) Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 16(1):98. https://doi.org/10.1186/s12864-015-1326-6

  • Kodad O, Sánchez A, Saibo N, Oliveira M (2010) Molecular characterization of five new S alleles associated with self-incompatibility in local Spanish almond cultivars. XIV GREMPA Meeting on Pistachios and Almonds. CIHEAM, Zaragoza

    Google Scholar 

  • Kodad O, Socias i Company R (2008) Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationship with kernel quality. J Agric Food Chem 56:4096–4101

    Google Scholar 

  • Kodad O, Socias i Company R (2009) Review and update of self-incompatibility alleles in almond. Int Soc Hortic Sci (ISHS) 421–424. https://doi.org/10.17660/ActaHortic.2009.814.70

  • Kodad O, Socias i Company R, Sánchez A, Oliveira MM (2009) The expression of self-compatibility in almond may not only be due to the presence of the Sf allele. J Am Soc Hortic Sci 134(2):221–227

    Google Scholar 

  • Kodad O, Socias i Company R, Alonso JM (2015) Unilateral recognition of the Sf allele in almond. Sci Hortic 185:29–33. https://doi.org/10.1016/j.scienta.2015.01.016

  • Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50(1):29–41. https://doi.org/10.1023/A:1016050018779

    Article  CAS  PubMed  Google Scholar 

  • Liu Z-q, Xu G-h, Zhang S-l (2007) Pyrus pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen and tubes in vitro. Protoplasma 232(1):61. https://doi.org/10.1007/s00709-007-0269-4

    Article  PubMed  Google Scholar 

  • Luu D-T, Qin X, Morse D, Cappadocia M (2000) S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature 407(6804):649

    Article  CAS  PubMed  Google Scholar 

  • Ma RC, Oliveira M (2002) Evolutionary analysis of S-RNase genes from Rosaceae species. Mol Gen Genomics 267(1):71–78. https://doi.org/10.1007/s00438-002-0637-x

  • Marchese A, Bošković RI, Martínez-García PJ, Tobutt KR (2008) The origin of the self-compatible almond ‘Supernova.’ Plant Breed 127(1):105–107. https://doi.org/10.1111/j.1439-0523.2008.01421.x

    Article  Google Scholar 

  • Matsumoto D, Tao R (2016a) Distinct self-recognition in the Prunus S-RNase-based gametophytic self-incompatibility system. Hortic J MI-IR06

    Google Scholar 

  • Matsumoto D, Tao R (2016b) Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system. Plant Mol Biol 91(4):459–469. https://doi.org/10.1007/s11103-016-0479-2

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto D, Tao R (2019) Recognition of S-RNases by an S locus F-box like protein and an S haplotype-specific F-box like protein in the Prunus-specific self-incompatibility system. Plant Mol Biol 100(4):367–378. https://doi.org/10.1007/s11103-019-00860-8

    Article  CAS  PubMed  Google Scholar 

  • Matton DP, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M (1997) Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9(10):1757–1766. https://doi.org/10.2307/3870522

  • McClure B (2006) New views of S-RNase-based self-incompatibility. Curr Opin Plant Biol 9(6):639–646. https://doi.org/10.1016/j.pbi.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  • Monastra F, Della Strada G, Fideghelli C, Quarta R (1988) Supernova: une nouvelle varieté d ‘amandier obtenue par mutagenese. In: 7 Colloque du GREMPA. Rapport EUR, pp 3–7

    Google Scholar 

  • Orcheski B, Brown S (2012) A grower’s guide to self and cross-incompatibility in apple. Good Fruit Grower 20:25–28

    Google Scholar 

  • Ortega E, Sutherland BG, Dicenta F, Boskovic R, Tobutt KR (2005) Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes. Plant Breed 124(2):188–196. https://doi.org/10.1111/j.1439-0523.2004.01058.x

    Article  CAS  Google Scholar 

  • Ortega E, Bošković R, Sargent D, Tobutt K (2006) Analysis of S-RNase alleles of almond (Prunus dulcis): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Mol Genet Genomics 276(5):413–426. https://doi.org/10.1007/s00438-006-0146-4

    Article  CAS  PubMed  Google Scholar 

  • Pandey KK (1968) Compatibility relationships in flowering plants: role of the S-Gene complex. Am Nat 102(927):475–489. https://doi.org/10.1086/282560

    Article  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2004) Identification of S-alleles in almond using multiplex PCR. Euphytica 138(3):263–269. https://doi.org/10.1023/B:EUPH.0000047097.96271.bf

  • Sassa H, Hirano H (1998) Style-specific and developmentally regulated accumulation of a glycosylated thaumatin/PR5-like protein in Japanese pear (Pyrus serotina Rehd.). Planta 205(4):514–521. https://doi.org/10.1007/s004250050350

  • Socias i Company R (1990) Breeding self-compatible almonds. In: Janick J (ed) Plant breeding reviews, vol 8. Wiley, New York, pp 313–338. https://doi.org/10.1002/9781118061053.ch9

  • Socias i Company R, Fernández i Martí À, Kodad O, Alonso JM (2010) Self-compatibility evaluation in almond: strategies, achievements, and failures. HortScience 45(8):1155–1159

    Google Scholar 

  • Sonneveld T, Tobutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17(1):37–51. https://doi.org/10.1105/tpc.104.026963

    Article  CAS  PubMed  Google Scholar 

  • Sutherland B, Robbins T, Tobutt K, Weber W (2004) Primers amplifying a range of Prunus S-alleles. Plant Breed 123(6):582–584. https://doi.org/10.1111/j.1439-0523.2004.01016.x

    Article  CAS  Google Scholar 

  • Tao R, Iezzoni AF (2010) The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Sci Hortic 124 (4):423–433. https://doi.org/10.1016/j.scienta.2010.01.025

  • Tufts W, Philip G (1922) Almond pollination. Cali Agri Bul

    Google Scholar 

  • Uppal D, Dhillon D, Dhaliwal G, Chanana Y (1984) Selection of self-fruitful hybrids in intervarietal crosses of almonds. Indian J Hortic 41(1, 2):80–82

    Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260(2–3):261–268. https://doi.org/10.1007/s004380050894

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15(3):771–781. https://doi.org/10.1105/tpc.009290

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck N, Iezzoni A, Tao R (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P-mume. Plant J 39:573–586

    Article  CAS  PubMed  Google Scholar 

  • Weinbaum SA (1985) Role of natural self-pollination in self-fruitfulness of almond. Sci Hortic 27(3):295–302. https://doi.org/10.1016/0304-4238(85)90034-2

    Article  Google Scholar 

  • Westwood MN (1988) Temperate-zone pomology. Timber Press, vol 2

    Google Scholar 

  • Williams JS, Wu L, Li S, Sun P, Kao T-H (2015) Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Front Plant Sci 6(41). https://doi.org/10.3389/fpls.2015.00041

  • Wirthensohn M (2020) New cultivars from the Australian almond breeding program. HortSci 55(5):738. https://doi.org/10.21273/hortsci14716-19

    Article  Google Scholar 

  • Wünsch A, Hormaza JI (2004) Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry (Prunus avium L.). Theoret Appl Genet 108(2):299–305. https://doi.org/10.1007/s00122-003-1418-6

  • Zhou J, Wang F, Ma W, Zhang Y, Han B, Xue Y (2003) Structural and transcriptional analysis of S-locus F-box genes in Antirrhinum. Sex Plant Reprod 16(4):165–177. https://doi.org/10.1007/s00497-003-0185-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Fernández i Martí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goonetilleke, S.N., Wirthensohn, M.G., Dodd, R.S., Fernández i Martí, Á. (2023). Recent Advances on Self-incompatibility in Almond: A Glance at Genomic and Transcriptomic Levels. In: Sánchez-Pérez, R., Fernandez i Marti, A., Martinez-Gomez, P. (eds) The Almond Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-30302-0_7

Download citation

Publish with us

Policies and ethics