Skip to main content

Metabolomic Studies in Almond

  • Chapter
  • First Online:
The Almond Tree Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 140 Accesses

Abstract

Metabolomics is an emerging field that measures all the metabolites present in a cell, tissue, or organ. From all the next-generation sequencing platforms, metabolomics is maybe the one that advances not as fast as wanted. This is because the number of compounds to be discovered is almost infinite. Plants, the best industry to fabricate chemical compounds, represent one of the systems where the discovery and identification of new metabolites are a real challenge. The last and current advances of metabolomics in almonds are shown in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:1–38

    Article  Google Scholar 

  • Baldermann S, Homann T, Neugart S et al (2018) Selected plant metabolites involved in oxidation-reduction processes during bud dormancy and ontogenetic development in sweet cherry buds (Prunus avium L.). Molecules 23:1197–1220

    Google Scholar 

  • Ben Mohamed H, Vadel AM, Geuns JMC, Khemira H (2010) Biochemical changes in dormant grapevine shoot tissues in response to chilling: possible role in dormancy release. Sci Hortic (amsterdam) 124:440–447

    Article  CAS  Google Scholar 

  • Bernal-Vicente A, Cantabella D, Petri C, Hernández JA, Diaz-Vivancos P (2018) The salt-stress response of the transgenic plum line J8–1 and its interaction with the salicylic acid biosynthetic pathway from mandelonitrile. Int J Mol Sci 19:1–19

    Article  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95:436–444

    Article  CAS  PubMed  Google Scholar 

  • Castède S, Campoy JA, García JQ et al (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202:703–715

    Article  PubMed  Google Scholar 

  • Chmielewski FM, Huschek G, Baldermann S et al (2018) Abscisic acid related metabolites in Sweet Cherry Buds (Prunus avium L.). J Hortic 5:1–9

    Google Scholar 

  • Conrad AO, Yu J, Staton ME et al (2019) Association of the phenylpropanoid pathway with dormancy and adaptive trait variation in apricot (Prunus armeniaca). Tree Physiol 39:1136–1148

    Article  CAS  PubMed  Google Scholar 

  • Del Cueto J, Ionescu IA, Pičmanová M et al (2017) Cyanogenic glucosides and derivatives in almond and sweet cherry flower buds from dormancy to flowering. Front Plant Sci 8:1–16

    Google Scholar 

  • Del Cueto J, Møller BL, Dicenta F, Sánchez-Pérez R (2018) β-Glucosidase activity in almond seeds. Plant Physiol Biochem 126:163–172

    Article  PubMed  Google Scholar 

  • Fishman S, Erez A, Couvillon GA (1987) The temperature dependence of dormancy breaking in plants: Computer simulation of processes studied under controlled temperatures. J Theor Biol 126:309–321

    Article  Google Scholar 

  • Gabay G, Faigenboim A, Dahan Y et al (2019) Transcriptome analysis and metabolic profiling reveal the key role of α-linolenic acid in dormancy regulation of European pear. J Exp Bot 70:734–737

    Article  Google Scholar 

  • Gianinetti A, Finocchiaro F, Bagnaresi P et al (2018) Seed dormancy involves a transcriptional program that supports early plastid functionality during imbibition. Plants (basel, Switzerland) 7:35–84

    PubMed  Google Scholar 

  • Gil MI, Tomás-Barberán FA, Hess-Pierce B, Kader AA (2002) Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J Agric Food Chem 50:4976–4982

    Article  CAS  PubMed  Google Scholar 

  • Gil Solsona R, Boix C, Ibáñez M, Sancho JV (2018) The classification of almonds (Prunus dulcis) by country and variety using UHPLC-HRMS-based untargeted metabolomics. Food Addit Contam Part A 35:395–403

    Article  CAS  Google Scholar 

  • Guillamón JG, Prudencio ÁS, Yuste JE, Dicenta F, Sánchez-Pérez R (2020) Ascorbic acid and prunasin, two candidate biomarkers for endodormancy release in almond flower buds identified by a nontargeted metabolomic study. Hortic Res 7:203–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 2016. https://doi.org/10.3389/fpls.2016.00548

  • Ionescu IA, López-Ortega G, Burow M et al (2017) Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry. Front Plant Sci 8:1–17

    Article  CAS  Google Scholar 

  • Kaufmann H, Blanke M (2017) Changes in carbohydrate levels and relative water content (RWC) to distinguish dormancy phases in sweet cherry. J Plant Physiol 218:1–5

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Terol J, Martí G et al (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Conejero A, Arbona V et al (2012) Chilling-dependent release of seed and bud dormancy in peach associates to common changes in gene expression. PLoS ONE 7:e35777–e35785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhao J, Zhao Y et al (2016) Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci Rep 6:2–11

    Google Scholar 

  • Liao X, Greenspan P, Pegg RB (2019) Characterizing the phenolic constituents and antioxidant capacity of Georgia peaches. Food Chem 271:345–353

    Article  CAS  PubMed  Google Scholar 

  • Michailidis M, Karagiannis E, Tanou G et al (2018) Metabolic mechanisms underpinning vegetative bud dormancy release and shoot development in sweet cherry. Environ Exp Bot 155:1–11

    Article  CAS  Google Scholar 

  • Moco S, Vervoort J, Moco S, Bino RJ, De Vos RCH, Bino R (2007) Metabolomics technologies and metabolite identification. TrAC Trends Anal Chem 26:855–866

    Article  CAS  Google Scholar 

  • Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep 6:1–15

    Article  PubMed  Google Scholar 

  • Pérez FJ, Villegas D, Mejia N (2002) Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves. Phytochemistry 60:573–580

    Article  PubMed  Google Scholar 

  • Pérez FJ, Vergara R, Rubio S (2008) H2O2 is involved in the dormancy-breaking effect of hydrogen cyanamide in grapevine buds. Plant Growth Regul 55:149–155

    Article  Google Scholar 

  • Pičmanová M, Neilson EH, Motawia MS et al (2015) A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochem J 469:375–389

    Article  PubMed  Google Scholar 

  • Porto DD, Bruneau M, Perini P et al (2015) Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes. J Exp Bot 66:2659–2672

    Article  CAS  PubMed  Google Scholar 

  • Prudencio ÁS, Hoeberichts FA, Dicenta F, Martínez-Gómez P, And, Sánchez-Pérez R (2020) Identification of early and late flowering time candidate genes in endodormant and ecodormant almond flower buds. Tree Physiol 2020

    Google Scholar 

  • Redestig H, Kusano M, Fukushima A, Matsuda F, Saito K, Arita M (2010) Consolidating metabolite identifiers to enable contextual and multi-platform metabolomics data analysis. BMC Bioinform 11. https://doi.org/10.1186/1471-2105-11-214

  • Ribbenstedt A, Ziarrusta H, Benskin JP (2018) Development, characterization and comparisons of targeted and non-targeted metabolomics methods. PLoS ONE 13:1–18

    Article  Google Scholar 

  • Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 1:1–24

    Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389

    Article  Google Scholar 

  • Saylor MH, Mansell RL (1977) Hydroxycinnamoyl: coenzyme a transferase involved in the biosynthesis of kaempferol-3-(p-coumaroyl triglucoside) in Pisum sativum. Zeitschrift Fur Naturforsch Sect C J Biosci 32:765–768

    Article  Google Scholar 

  • Stillwell W, Brengle B, Hester P, Wassall SR (1989) Interaction of abscisic acid with phospholipid membranes. Biochemistry 28:2798–2804

    Article  CAS  Google Scholar 

  • Takemura Y, Kuroki K, Jiang M, Matsumoto K, Tamura F (2015) Identification of the expressed protein and the impact of change in ascorbate peroxidase activity related to endodormancy breaking in Pyrus pyrifolia. Plant Physiol Biochem 86:121–129

    Article  CAS  PubMed  Google Scholar 

  • Thodberg S, Del Cueto J, Mazzeo R et al (2018) Elucidation of the amygdalin pathway reveals the metabolic basis of bitter and sweet almonds (Prunus dulcis). Plant Physiol 178:1096–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yada S, Huang G, Lapsley K (2013) Natural variability in the nutrient composition of California-grown almonds. J Food Compos Anal 30:80–85

    Article  CAS  Google Scholar 

  • Ye N, Zhu G, Liu Y et al (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 63:1809–1822

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yan X, Su F et al (2018a) Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. Sci Total Environ 625:440–448

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhuo X, Zhao K et al (2018b) Transcriptome profiles reveal the crucial roles of hormone and sugar in the bud dormancy of Prunus mume. Sci Rep 8:1–15

    Google Scholar 

  • Zhang X, Li X, Su M et al (2020) A comparative UPLC-Q-TOF/MS-based metabolomics approach for distinguishing peach (Prunus persica (L.) Batsch) fruit cultivars with varying antioxidant activity. Food Res Int 137:109531

    Google Scholar 

  • Zhao P, Li X, Jia J et al (2019) bHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy. J Exp Bot 70:269–284

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Acheampong AK, Shi Z et al (2018) Abscisic acid catabolism enhances dormancy release of grapevine buds. Plant Cell Environ 41:2490–2503

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Work produced with the support of a “2020 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation”. The Foundation takes no responsibility for the opinions, statements and contents of this project, which are entirely the responsibility of its authors. This work has also been supported by the project ALADINO-MAGIC funded by Ministry of Science and Innovation (Spain). JG. Guillamón is grateful to “Fundación Tatiana Pérez de Guzmán el Bueno” for this Ph.D. fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Sánchez-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guillamón Guillamón, J., Sánchez-Pérez, R. (2023). Metabolomic Studies in Almond. In: Sánchez-Pérez, R., Fernandez i Marti, A., Martinez-Gomez, P. (eds) The Almond Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-30302-0_6

Download citation

Publish with us

Policies and ethics