Current Research Topics in Robotics at IGMR

Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 78)


This paper gives an overview of current research topics at the Institute of Mechanism Theory, Machine Dynamics and Robotics of RWTH Aachen University. A variety of application areas is introduced, including robotic reconstruction, agile production, additive manufacturing and human-robot collaboration. Each topic offers novel and unique contributions to its field of robotics.


Radar SLAM Additive manufacturing Agile production Human-robot-collaboration Internet of robotics 



The authors would like to thank:

The German Research Foundation DFG for the kind support within the Cluster of Excellence “Internet of Production” - Project-ID: 390621612.

The European Union for the kind support within the project “Robots to Re-Construction” - Project-ID: 687593.


  1. 1.
    Huang, S.H., Liu, P., Mokasdar, A., et al.: Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 67(5–8), 1191–1203 (2013). Scholar
  2. 2.
    Siebrecht, J., Jacobs, G., Beckers, A., et al.: Einfluss von Prozessparametern auf die Funktionserfüllung von Bauteilen beim Fused Deposition Modeling. In: Krause, D., Paetzold, K., Wartzack, S. (eds.) Design for X: Beiträge zum 27. DfX-Symposium. TuTech Verlag, Hamburg, pp. 123–134 (2016)Google Scholar
  3. 3.
    Allen, R.J.A., Trask, R.S.: An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot. Addit. Manuf. 8, 78–87 (2015)CrossRefGoogle Scholar
  4. 4.
    Hope, R.L., Roth, R.N., Jacobs, P.A.: Adaptive slicing with sloping layer surfaces. Rapid Prototyp. J. 3(3), 89–98 (1997). Scholar
  5. 5.
    Jin, Y., Du, J., He, Y., et al.: Modeling and process planning for curved layer fused deposition. Int. J. Adv. Manuf. Technol. 91(1–4), 273–285 (2017). Scholar
  6. 6.
    Spoerk, M., Arbeiter, F., Cajner, H., et al.: Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J. Appl. Polym. Sci. 134(41), 1 (2017). Scholar
  7. 7.
    Fraunhofer IPA: 3D-gedruckte Leichtbauteile für den Mittelstand (Endlosfaserdrucken) (2016). Accessed 09 Apr 2018
  8. 8.
    Stratasys Ltd.: 8-Axis Freedom for Strong Composites: Get better-performing composite parts faster with the Robotic Composite 3D Demonstrator (2019). Accessed 25 Mar 2019
  9. 9.
    Detert, T., Lorenz, M., Schmitz, M., et al.: Robotergeführte Objektmanipulation für die generative Fertigung. In: Beitelschmidt, M. (ed.) Tagungsband 12. Kolloquium Getriebetechnik: Technische Universität Dresden, 20–22 September 2017. TUD Press, Dresden (2017)Google Scholar
  10. 10.
    Livesu, M., Ellero, S., Martínez, J., et al.: From 3D models to 3D prints: an overview of the processing pipeline. Comput. Graph. Forum 36(2), 537–564 (2017). Scholar
  11. 11.
    Reisgen, U., Stein, L.: Grundlagen der Fügetechnik: Schweißen, Löten und Kleben. Fachbuchreihe Schweißtechnik, Band 161. DVS Media GmbH, Düsseldorf (2016)Google Scholar
  12. 12.
    Mannheim, T., Riedel, M., Hüsing, M., et al.: A new way of grasping: PARAGRIP—the fusion of gripper and robot. In: Carbone, G. (ed.) Grasping in Robotics, pp. 433–464. Springer, London (2013)CrossRefGoogle Scholar
  13. 13.
    Thomas, C.: Entwicklung einer Bewertungssystematik für die Mensch-Roboter-Kollaboration. Dissertation, Shaker Verlag GmbH (2017)Google Scholar
  14. 14.
    ISO International Organization for Standardization (2016-02-00) Robots and robotic devices - Collaborative robots 25.040.30 (15066)Google Scholar
  15. 15.
    DIN German Institute for Standardization: Industrieroboter – Sicherheitsanforderungen – Teil 1: Roboter (DIN 10218-1) (2016)Google Scholar
  16. 16.
    Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017). Scholar
  17. 17.
    Shahidi, A., Detert, T., Hüsing, M., et al.: Agile assembly system by consensus of robot and sensor network – an introduction to industry 4.0: Fünfte IFToMM D-A-CH Konferenz 2019 (2019)Google Scholar
  18. 18.
    CoE IoP: RWTH AACHEN UNIVERSITY Cluster of Excellence Internet of Production - English (2019). Accessed 19 Mar 2019
  19. 19.
    Detert, T., Charaf Eddine, S., Fauroux, J.-C., et al.: Bots2ReC: introducing mobile robotic units on construction sites for asbestos rehabilitation. Constr. Robot. 1(1–4), 29–37 (2017). Scholar
  20. 20.
    Cadena, C., Carlone, L., Carrillo, H., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016). Scholar
  21. 21.
    Charaf Eddine, S., Mandischer, N., Huesing, M., et al.: Bots2ReC: Radar-SLAM für die teilautonome Asbsestsanierung. In: VDI Mechatroniktagung, Paderborn (2019)Google Scholar
  22. 22.
    Adams, M., Jose, E.: Robotic Navigation and Mapping with Radar. Artech House, Norwood (2012)Google Scholar
  23. 23.
    Montesano, L., Minguez, J., Montano, L.: Probabilistic scan matching for motion estimation in unstructured environments. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005. IEEE Operations Center, Piscataway pp. 3499–3504 (2005)Google Scholar
  24. 24.
    Singer, S., Nelder, J.: Nelder-Mead algorithm. Scholarpedia 4(7), 2928 (2009). Scholar
  25. 25.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Mechanism Theory, Machine Dynamics and RoboticsAachenGermany

Personalised recommendations