Johnson, D.W., Johnson, R.T.: An educational psychology success story: social interdependence theory and cooperative learning. Educ. Res. 38, 365–379 (2009). https://doi.org/10.1037/pspa0000044
CrossRef
Google Scholar
Johnson, D.W., Johnson, R.T.: The internal dynamics of cooperative learning groups. In: Slavin, R., Sharan, S., Kagan, S., Hertz-Lazarowitz, R., Webb, C., Schmuck, R. (eds.) Learning to Cooperate, Cooperating to Learn, pp. 103–124. Springer, Boston (1985). https://doi.org/10.1007/978-1-4899-3650-9_4
CrossRef
Google Scholar
Slavin, R.E.: Research on cooperative learning and achievement: what we know, what we need to know. Contemp. Educ. Psychol. 21, 43–69 (1996)
CrossRef
Google Scholar
Tutty, J.I., Klein, J.D.: Computer-mediated instruction: a comparison of online and face-to-face collaboration. Educ. Technol. Res. Dev. 56, 101–124 (2008)
CrossRef
Google Scholar
Dillenbourg, P., Järvelä, S., Fischer, F.: The evolution of research on computer-supported collaborative learning. In: Balacheff, N., Ludvigsen, S., de Jong, T., Lazonder, A., Barnes, S. (eds.) Technology-Enhanced Learning, pp. 3–19. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9827-7_1
CrossRef
Google Scholar
Dillenbourg, P., Schneider, D.: Mediating the mechanisms which make collaborative learning sometimes effective. Int. J. Educ. Telecommun. 1, 131–146 (1995)
Google Scholar
Lin, Y.-T., Huang, Y.-M., Cheng, S.-C.: An automatic group composition system for composing collaborative learning groups using enhanced particle swarm optimization. Comput. Educ. 55, 1483–1493 (2010)
CrossRef
Google Scholar
Wilkinson, I.A.G., Fung, I.Y.Y.: Small-group composition and peer effects. Int. J. Educ. Res. 37, 425–447 (2002)
CrossRef
Google Scholar
Meyer, D.: OptAssign—a web-based tool for assigning students to groups. Comput. Educ. 53, 1104–1119 (2009)
CrossRef
Google Scholar
Veerman, A., Veldhuis-Diermanse, E.: Collaborative learning through computer-mediated communication in academic education. In: Euro CSCL, pp. 625–632 (2001)
Google Scholar
Cen, L., Ruta, D., Powell, L., Hirsch, B., Ng, J.: Quantitative approach to collaborative learning: performance prediction, individual assessment, and group composition. Int. J. Comput. Collab. Learn. 11, 187–225 (2016)
Google Scholar
Akyol, Z., Garrison, D.R., Ozden, M.Y.: Online and blended communities of inquiry: exploring the developmental and perceptional differences. Int. Rev. Res. Open Distrib. Learn. 10, 65 (2009). https://doi.org/10.19173/irrodl.v10i6.765
CrossRef
Google Scholar
Lou, Y., Abrami, P.C., D’Apollonia, S.: Small group and individual learning with technology: a meta-analysis. Rev. Educ. Res. 71, 449–521 (2001). https://doi.org/10.3102/00346543071003449
CrossRef
Google Scholar
Lohman, M.C., Finkelstein, M.: Designing groups in problem-based learning to promote problem-solving skill and self-directedness. Instr. Sci. 28, 291–307 (2000). https://doi.org/10.1023/A:1003927228005
CrossRef
Google Scholar
Tu, C.-H., McIsaac, M.: The relationship of social presence and interaction in online classes. Am. J. Distance Educ. 16, 131–150 (2002). https://doi.org/10.1207/S15389286AJDE1603_2
CrossRef
Google Scholar
Salomon, G., Globerson, T.: When teams do not function the way they ought to. Int. J. Educ. Res. 13, 89–99 (1989)
CrossRef
Google Scholar
Borgatti, S.P., Mahra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323, 892–895 (2009). (80), https://doi.org/10.1126/science.1165821
CrossRef
Google Scholar
Le Grand, B., Heymann, S.: Visual analysis of complex networks for business intelligence with Gephi. In: 1st International Symposium on Visualisation and Business Intelligence, in conjunction with the 17th International Conference Information Visualisation. (2013)
Google Scholar
Saqr, M., Fors, U., Tedre, M.: How the study of online collaborative learning can guide teachers and predict students’ performance in a medical course. BMC Med. Educ. 18 (2018). https://doi.org/10.1186/s12909-018-1126-1
Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978). https://doi.org/10.1016/0378-8733(78)90021-7
CrossRef
Google Scholar
Lü, L., et al.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016). https://doi.org/10.1016/j.physrep.2016.06.007
MathSciNet
CrossRef
Google Scholar
Liao, H., Mariani, M.S., Medo, M., Zhang, Y.C., Zhou, M.Y.: Ranking in evolving complex networks. Phys. Rep. 689, 1–54 (2017). https://doi.org/10.1016/j.physrep.2017.05.001
MathSciNet
CrossRef
MATH
Google Scholar
Cela, K.L., Sicilia, M.Á., Sánchez, S.: Social network analysis in E-Learning environments: a preliminary systematic review. Educ. Psychol. Rev. 27, 219–246 (2014). https://doi.org/10.1007/s10648-014-9276-0
CrossRef
Google Scholar
Dado, M., Bodemer, D.: A review of methodological applications of social network analysis in computer-supported collaborative learning. Educ. Res. Rev. 22, 159–180 (2017). https://doi.org/10.1016/j.edurev.2017.08.005
CrossRef
Google Scholar
Rabbany, R., Elatia, S., Takaffoli, M., Zaïane, O.R.: Collaborative learning of students in online discussion forums: a social network analysis perspective. In: Peña-Ayala, A. (ed.) Educational Data Mining. SCI, vol. 524, pp. 441–466. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02738-8_16
CrossRef
Google Scholar
Saqr, M., Fors, U., Tedre, M., Nouri, J.: How social network analysis can be used to monitor online collaborative learning and guide an informed intervention. PLoS One 13, 1–22 (2018)
Google Scholar
Kovanovic, V., Joksimovic, S., Gašević, D., Hatala, M.: What is the source of social capital ? the association between social network position and social presence in communities of inquiry. In: Proceedings of the Workshop Graph-Based Educational Data Mining Conference (G-EDM 2014), vol. 1183, pp. 1–8 (2014)
Google Scholar
Saqr, M., Fors, U., Nouri, J.: Using social network analysis to understand online Problem-Based Learning and predict performance. PLoS One. 13, e0203590 (2018)
CrossRef
Google Scholar
Shaffer, D.W., et al.: Epistemic network analysis: a prototype for 21st-century assessment of learning. Int. J. Learn. Media. 1, 33–53 (2009). https://doi.org/10.1162/ijlm.2009.0013
CrossRef
Google Scholar
Mennin, S.: Small-group problem-based learning as a complex adaptive system. Teach. Teach. Educ. 23, 303–313 (2007). https://doi.org/10.1016/j.tate.2006.12.016
CrossRef
Google Scholar
Cristancho, S., Field, E., Lingard, L.: What is the state of complexity science in medical education research? Med. Educ. 53, 95–104 (2019). https://doi.org/10.1111/medu.13651
CrossRef
Google Scholar
Decuyper, S., Dochy, F., Van den Bossche, P.: Grasping the dynamic complexity of team learning: an integrative model for effective team learning in organisations. Educ. Res. Rev. 5, 111–133 (2010). https://doi.org/10.1016/j.edurev.2010.02.002
CrossRef
Google Scholar
Morrison, J.: ABC of learning and teaching in medicine: evaluation. BMJ. 326, 385–387 (2003). https://doi.org/10.1136/bmj.326.7385.385
CrossRef
Google Scholar
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129–1164 (1991)
CrossRef
Google Scholar
Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)
Google Scholar
Jalili, M., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. PLoS One 10, e0143111 (2015). https://doi.org/10.1371/journal.pone.0143111
CrossRef
Google Scholar
R Core Team: R: A Language and Environment for Statistical Computing (2018). https://www.r-project.org
Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 9, 1–12 (2014). https://doi.org/10.1371/journal.pone.0098679
CrossRef
Google Scholar
Latora, V., Marchiori, M.: Efficient behavior of small-world networks, pp. 3–6 (2001). https://doi.org/10.1103/PhysRevLett.87.198701
Salter-Townshend, M., White, A., Gollini, I., Murphy, T.B.: Review of statistical network analysis: Models, algorithms, and software. Stat. Anal. Data Min. 5, 243–264 (2012). https://doi.org/10.1002/sam.11146
MathSciNet
CrossRef
Google Scholar
Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge (1980)
CrossRef
Google Scholar
Roschelle, J., Teasley, S.D.: The construction of shared knowledge in collaborative problem solving. In: O’Malley, C. (ed.) Computer Supported Collaborative Learning, pp. 69–97. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-85098-1_5
CrossRef
Google Scholar