Skip to main content

Quaternary Glaciation of the Himalaya and Adjacent Mountains

  • Chapter
  • First Online:
Himalayan Weather and Climate and their Impact on the Environment
  • 1082 Accesses

Abstract

The Himalaya and adjacent mountains are the most glaciated regions outside the polar realms. Abundant field studies, aided by remote sensing, and newly developing geochronological methods are aiding in reconstructing the timing and extent of Quaternary glaciation throughout the region. Abundant well-preserved glacial geologic evidence throughout the region shows that at least nine major regionally synchronous glacier advances occurred in the region over the past ~400 ka. The maximum extent of glaciation has been broadly defined and is characterized by extensive valley glaciers and expanded ice caps. The timing of maximum glacier extent is asynchronous throughout the region, with some areas experiencing maximum glaciation prior to the last glacial cycle (>100 ka), while in other regions it was during the early part of the last glacial (~30–70 ka), and in some regions, was possibly coincident with the global last glacial maximum (LGM) at ~18–24 ka. Glacier advances have been limited to a few kilometers beyond their present position in most regions since the LGM. The maximum glacier advance occurring during the Holocene at ~9–8 ka. The higher resolution of the Holocene glacial geologic record allows ~5 regional glacier advances to be resolved. All advances were somewhat restricted in extent. Glaciers have retreated in most areas during the last 100 years. However, in the Karakoram there has been little retreat and many glaciers have surged. Himalayan glaciation is forced by multiple drivers, and the timing and extent of glaciation is governed by a complex combination of different factors specific to each locality, including climate and microclimate regimes, topographic controls, and geomorphic and tectonic settings. Study of the Quaternary glacial history suggests that nature of future glacier fluctuations in response to human-induced climate change will be very complex and variable throughout the Himalaya and adjacent mountas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowski U, Bergau A, Seebach D, Zech R, Glaser B, Sosin P, Kubik PW, Zech W (2006) Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan) and the Alay-Turkestan range (Kyrgyzstan). Quat Sci Rev 25:1080–1096

    Article  Google Scholar 

  • Bagla P (2009) No sign yet of Himalayan meltdown, Indian report finds. Science 326:924–925

    Article  Google Scholar 

  • Barnard PL, Owen LA, Finkel RC (2004a) Style and timing of glacial and paraglacial sedimentation in a monsoonal influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sediment Geol 165:199–221

    Article  Google Scholar 

  • Barnard PL, Owen LA, Sharma MC, Finkel RC (2004b) Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology 61:91–110

    Article  Google Scholar 

  • Benn DI, Owen LA (1998) The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. J Geol Soc 155:353–363

    Google Scholar 

  • Benn DI, Owen LA (2002) Himalayan glacial sedimentary environments: a framework for reconstructing and dating former glacial extents in high mountain regions. Quat Int 97(98):3–26

    Article  Google Scholar 

  • Benn DI, Owen LA, Osmaston HA, Seltzer GO, Porter SC, Mark B (2005) Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quat Int 138(139):8–21

    Article  Google Scholar 

  • Bishop MP, Bush A, Copland L, Kamp U, Owen LA, Seong YB, Shroder JF (2010) Climate change and mountain topographic evolution in the Central Karakoram, Pakistan. Ann Geogr 100:1–22

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan Glaciers. Science 336:310–314

    Google Scholar 

  • Burbank DW, Kang JC (1991) Relative dating of Quaternary moraines, Rongbuk Valley, Mount Everest, Tibet: implications for an ice sheet on the Tibetan Plateau. Quat Res 36:1–18

    Article  Google Scholar 

  • Chevalier M-L, Ryerson FJ, Tapponnier P, Finkel RC, Van Der Woerd J, Haibing L, Qing L (2005) Slip-rate measurements on the Karakoram Fault may imply secular variations in fault motion. Science 307:411–414

    Article  Google Scholar 

  • Chevalier M-L, Hilley G, Tapponnier P, Van Der Woerd J, Liu-Zeng J, Finkel RC, Ryerson FJ, Li Haibing L, Liu X (2011) Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces. Quat Sci Rev 30:528–554

    Article  Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714

    Article  Google Scholar 

  • Cogley JG (2011) Present and future states of Himalaya and Karakoram glaciers. Ann Glaciol 52:69–73

    Article  Google Scholar 

  • Copland L, Sylvestre T, Bishop MP, Shroder JF, Seong YB, Owen LA, Bush A, Kamp U (2011) Expanded and recently increased glacier surging the Karakoram. Arct Alp Antarc Res 43:503–516

    Article  Google Scholar 

  • Cronin VS, Johnson WP, Johnson NM, Johnson GD (1989) Chronostratigraphy of the upper Cenozoic Bunthang sequence and possible mechanisms controlling base level in Skardu intermontane basin, Karakoram Himalaya, Pakistan. Geol Soc Am Spec Pap 232:295–309

    Google Scholar 

  • Derbyshire E (1981) Glacier regime and glacial sediment facies: a hypothetical framework for the Qinghai-Xizang Plateau. In: Proceedings of symposium on Qinghai-Xizang (Tibet) Plateau, Beijing, China, Geological and ecological studies of Qinghai-Xizang Plateau, vol 2. Science Press, Beijing, pp 1649–1656

    Google Scholar 

  • Derbyshire E (1987) A history of the glacial stratigraphy in China. Quat Sci Rev 6:301–314

    Article  Google Scholar 

  • Derbyshire E, Owen LA (1997) Quaternary glacial history of the Karakoram Mountains and Northwest Himalayas: a review. Quat Int 38(39):85–102

    Article  Google Scholar 

  • Derbyshire E, Li J, Perrott FA, Xu S, Waters RS (1984) Quaternary glacial history of the Hunza valley Karakoram Mountains, Pakistan. In: Miller K (ed) International Karakoram project. Cambridge University Press, Cambridge, pp 456–495

    Google Scholar 

  • Derbyshire E, Shi Y, Li J, Zheng B, Li S, Wang J (1991) Quaternary glaciation of Tibet: the geological evidence. Quat Sci Rev 10:485–510

    Article  Google Scholar 

  • Dortch JM, Owen LA, Caffee MW (2010) Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quat Res 74:132–144

    Article  Google Scholar 

  • Dortch JM, Owen LA, Caffee MW (2013) Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen. Quat Sci Rev 78:188–208

    Article  Google Scholar 

  • Duncan CC, Klein AJ, Masek JG, Isacks BL (1998) Late Pleistocene and modern glaciations in Central Nepal from digital elevation data and satellite imagery. Quat Res 49:241–254

    Article  Google Scholar 

  • Ehlers J, Gibbard P (eds) (2004) Quaternary glaciations – extent and chronologies. Part III: South America, Asia, Africa, Australia, Antarctica. Dev Quat Sci 2:380pp

    Google Scholar 

  • Ehlers J, Gibbard P, Hughes PD (eds) (2011) Quaternary glaciations – extent and chronology: a closer look, Dev Quat Sci, vol 15, 2nd edn. Elsevier, Amsterdam, pp 929–942

    Google Scholar 

  • Eugster P, Scherler D, Thiede RC, Codilean AT, Strecker MR (2016) Rapid last glacial maximum deglaciation in the Indian Himalaya coeval with midlatitude glaciers: new insights from 10Be-dating of ice-olished bedrock surfaces in the Chandra Valley, NW Himalaya. Geophys Res Lett 43:1589–1597

    Article  Google Scholar 

  • Fielding E, Isacks B, Barazangi M, Duncan C (1994) How flat is Tibet? Geology 22:163–167

    Article  Google Scholar 

  • Finkel RC, Owen LA, Barnard PL, Caffee MW (2003) Beryllium-10 dating of Mount Everest moraines indicates a strong monsoonal influence and glacial synchroniety throughout the Himalaya. Geology 31:561–564

    Article  Google Scholar 

  • Frenzel B (1960) Die Vegetations- und Landschaftszonen Nordeurasiens während der letzten Eiszeit und während der Postglazialen Warmezeit. Akademie der Wissenschaften und der Literatur in Mainz, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse 13:937–1099

    Google Scholar 

  • Gayer E, Lavé J, Pik R, France-Lanord C (2006) Monsoonal forcing of Holocene glacier fluctuations in Ganesh Himal (central Nepal) constrained by cosmogenic 3He exposure ages of garnets. Earth Planet Sci Lett 252:275–288

    Article  Google Scholar 

  • Gillespie A, Molnar P (1995) Asynchronous maximum advances of mountain and continental glaciers. Rev Geophys 33:311–364

    Article  Google Scholar 

  • Hedrick KA, Seong YB, Owen LA, Caffee MC, Dietsch C (2011) Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of Northern India. Quat Int 236:21–33

    Article  Google Scholar 

  • Hedrick K, Owen LA, Chen J, Robinson A, Yuan Z, Yang X, Imrecke DB, Li W, Caffee MW, Schoenbohm LM, Zhang B (2017) Quaternary history and landscape evolution of a high-altitude intermountain basin, Waqia Valley, Chinese Pamir. Geomorphology 284:156–174

    Article  Google Scholar 

  • Hewitt K (1999) Quaternary moraines vs catastrophic avalanches in the Karakoram Himalaya, northern Pakistan. Quat Res 51:220–237

    Article  Google Scholar 

  • Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram Himalaya. Mt Res Dev 25:332–340

    Article  Google Scholar 

  • Hewitt K, Gosse J, Clague JJ (2011) Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. Geol Soc Am Bull 123:1836–1850

    Article  Google Scholar 

  • Heyman J, Hattestrand C, Stroeven AP (2008) Glacial geomorphology of the Bayan Har sector of the NE Tibetan plateau. J Maps 2008:42–62

    Article  Google Scholar 

  • Heyman J, Stroeven AP, Caffee MW, Hättestrand C, Harbor J, Li YK, Alexanderson H, Zhou LP, Hubbard A (2010) Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: the case of a missing LGM expansion, In: Heyman J (ed) Palaeoglaciology of the northeastern Tibetan Plateau. PhD thesis, Stockholm University, Stockholm

    Google Scholar 

  • Heyman J, Stroeven A, Harbor J, Caffee MW (2011) Too young or too old: evaluating 884 cosmogenic exposure dating based on an analysis of compiled boulder exposure 885 ages. Earth Planet Sci Lett 302:71–80

    Article  Google Scholar 

  • Holmes JA, Street-Perrott FA (1989) The Quaternary glacial history of Kashmir, North-West Himalaya: a Revision of de Terra and Paterson’s sequence. Z Geomorphol 76:195–212

    Google Scholar 

  • Hövermann J, Lehmkuhl F, Pörtge K-H (1993a) Pleistocene glaciations in Eastern and Central Tibet-preliminary results of the Chinese-German joint expeditions. Z Geomorphol 92:85–96

    Google Scholar 

  • Hövermann J, Lehmkuhl F, Süssenberger H (1993b) Neue Befunde zur Paläoklimatologie Nordafrikas und Zentralasiens. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 43:127–150

    Google Scholar 

  • Hughes PD, Gibbard PL (2015) A stratigraphical basis for the last glacial maximum (LGM). Quat Int 383:174–185

    Article  Google Scholar 

  • Jiao KQ, Shen YP (2006) Quaternary glaciations in Tanggulha Mountains. In: Shi YF, Su Z, Cui ZJ (eds) The Quaternary glaciations and environmental variations in China. Science and Technology Press of Hebei Province, Shijiazhuang, pp 326–356

    Google Scholar 

  • Kamp U, Owen LA (2011) Late Quaternary glaciation of Northern Pakistan. In: Elhers J, Gibbard P, Hughes PD (eds) Quaternary glaciations – extent and chronology: a closer look, Developments in Quaternary science, vol 15. Elsevier, Amsterdam, pp 909–927

    Chapter  Google Scholar 

  • Kargel JS, Leonard GJ et al (2016) Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351:8353-1-10

    Article  Google Scholar 

  • Kuhle M (1985) Ein subtropisches Inlandeis als Eiszeitauslöser, Südtibet un Mt. Everest expedition 1984. Georgia Augusta, Nachrichten aus der Universität Gottingen, May, pp 1–17

    Google Scholar 

  • Kuhle M (1987). The problem of a Pleistocene Inland Glaciation of the Northeastern Qinghai-Xizang Plateau. In: Reports of the Qinghai-Xizang (Tibet) Plateau, Hövermann J, Wang W. (eds). Beijing, pp 250–315

    Google Scholar 

  • Kuhle M (1988) Geomorphological findings on the built-up of Pleistocene glaciation in Southern Tibet and on the problem of inland ice. GeoJournal 17:457–512

    Google Scholar 

  • Kuhle M (1991) Observations supporting the Pleistocene inland glaciation of High Asia. GeoJournal 25:131–231

    Article  Google Scholar 

  • Kuhle M (1995) Glacial isostatic uplift of Tibet as a consequence of a former ice sheet. GeoJournal 37:431–449

    Article  Google Scholar 

  • Lehmkuhl F (1995) Geomorphologische Untersuchungen zum Klima des Holoza¨ns und Jungpleistoza¨ns Osttibets. Göttinger Geographische Abhandlungen 102:1–184

    Google Scholar 

  • Lehmkuhl F (1997) Late Pleistocene, Late-glacial and Holocene glacier advances on the Tibetan Plateau. Quat Int 38(39):77–83

    Article  Google Scholar 

  • Lehmkuhl F (1998) Extent and spatial distribution of Pleistocene glaciations in Eastern Tibet. Quat Int 45(46):123–134

    Article  Google Scholar 

  • Lehmkuhl F, Lui S (1994) An outline of physical geography including Pleistocene glacial landforms of Eastern Tibet (Provinces Sichuan and Qinghai). GeoJournal 34:7–30

    Article  Google Scholar 

  • Lehmkuhl F, Owen LA, Derbyshire E (1998) Late Quaternary glacial history of northeastern Tibet. Quat Proc 6:121–142

    Google Scholar 

  • Lehmkuhl F, Klinge M, Stauch G (2004) The extent of late Pleistocene Glaciations in the Altai and Khangai Mountains. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations – extent and chronologies, Part III: South America, Asia, Africa, Australia, Antarctica. Elsevier, Oxford, pp 243–254

    Google Scholar 

  • Leuschner DC, Sirocko F (2003) Orbital insolation forcing of the Indian Monsoon – a motor for global climate change. Palaeogeogr Paleoclimatol Palaeoecol 197:83–95

    Article  Google Scholar 

  • Li B, Li J, Cui Z (eds) (1991) Quaternary glacial distribution map of Qinghai-Xizang (Tibet) Plateau 1:3,000,000. Shi Y. (Scientific Advisor), Quaternary Glacier, and Environment Research Center, Lanzhou University. Science Press, Beijing

    Google Scholar 

  • Maurer JM, Schaefer JM, Rupper S, Corley A (2019) Acceleration of ice loss across the Himalayas over the past 40 years. Sci Adv 5:eaav7266

    Article  Google Scholar 

  • Mayer C, Lambrecht A, Belò M, Smiraglia C, Diolaiuti G (2006) Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan. Ann Glaciol 43:123–131

    Article  Google Scholar 

  • Meyer MC, Hofmann C-C, Gemmell AMD, Haslinger E, Häusler H, Wangda D (2009) Holocene glacier fluctuations and migration of Neolithic yak pastoralists into the high valleys of northwest Bhutan. Quat Sci Rev 28:1217–1237

    Article  Google Scholar 

  • Mix AC, Bard E, Schneider R (2001) Environmental processes of the ice age: land, ocean, glaciers (EPILOG). Quat Sci Rev 20:627–657

    Article  Google Scholar 

  • Morén B, Heyman J, Stroeven AP (2011) Glacial geomorphology of the central Tibetan Plateau. J Maps 2011:115–125

    Article  Google Scholar 

  • Murari MK, Owen LA, Dortch JM, Caffee MW, Dietsch C, Fuchs M, Haneberg WC, Sharma MC, Townsend-Small A (2014) Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen. Quat Sci Rev 88C:159–182

    Article  Google Scholar 

  • National Academy (Committee on Himalayan Glaciers, Hydrology, Climate Change, and Implications for Water Security) (2012) Himalayan glaciers: climate change, water resources, and water security. The National Academies Press, Washington, DC, 156 pages

    Google Scholar 

  • NGRIP Members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Article  Google Scholar 

  • Orr EN, Owen LA, Saha S, Caffee MW, Murari MK (2018) Quaternary glaciation of the Lato Massif, Zanskar Range of NW Himalaya. Quat Sci Rev 183:140–156

    Article  Google Scholar 

  • Osmaston H (1994) The geology, geomorphology and Quaternary history of Zangskar. In: Crook J, Osmaston H (eds) Himalayan Buddhist villages. University of Bristol Press, Bristol, pp 1–36

    Google Scholar 

  • Owen LA (2011) Quaternary glaciation of Northern India. In: Elhers J, Gibbard P, Hughes PD (eds) Quaternary glaciations – extent and chronology: a closer look, Dev Quat Sci, vol 15, 2nd edn. Elsevier, Amsterdam, pp 929–942

    Google Scholar 

  • Owen LA (2017) Late Quaternary glacier fluctuations in the Himalaya and adjacent mountains. In: Prins HT, Namgail T (eds) Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers. Cambridge University Press, Cambridge, pp 155–176

    Chapter  Google Scholar 

  • Owen LA, Benn DI (2005) Equilibrium-line altitudes of the last glacial maximum for the Himalaya and Tibet: an assessment and evaluation of results. Quat Int 138(139):55–78

    Article  Google Scholar 

  • Owen LA, Dortch JM (2014) Quaternary glaciation of the Himalayan-Tibetan orogen. Quat Sci Rev 88:14–54

    Article  Google Scholar 

  • Owen LA, Benn DI, Derbyshire E, Evans DJA, Mitchell WA, Thompson D, Richardson S, Lloyd M, Holden C (1995) The geomorphology and landscape evolution of the Lahul Himalaya, Northern India. Z Geomorphol 39:145–174

    Google Scholar 

  • Owen LA, Derbyshire E, Richardson S, Benn DI, Evans DJA, Mitchell WA (1996) The Quaternary glacial history of the Lahul Himalaya, Northern India. J Quat Sci 11:25–42

    Article  Google Scholar 

  • Owen LA, Mitchell W, Bailey RM, Coxon P, Rhodes E (1997) Style and timing of Glaciation in the Lahul Himalaya, northern India: a framework for reconstructing late Quaternary palaeoclimatic change in the western Himalayas. J Quat Sci 12:83–109

    Article  Google Scholar 

  • Owen LA, Scott CH, Derbyshire E (2000) The Quaternary glacial history of Nanga Parbat. Quat Int 65(66):63–79

    Article  Google Scholar 

  • Owen LA, Gualtieri L, Finkel RC, Caffee MW, Benn DI, Sharma MC (2001) Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, Northern India: defining the timing of late Quaternary glaciation. J Quat Sci 16:555–563

    Article  Google Scholar 

  • Owen LA, Finkel RC, Caffee MW, Gualtieri L (2002a) Timing of multiple glaciations during the late Quaternary in the Hunza Valley, Karakoram Mountains, Northern Pakistan: defined by cosmogenic radionuclide dating of moraines. Geol Soc Am Bull 114:593–604

    Article  Google Scholar 

  • Owen LA, Kamp U, Spencer JQ, Haserodt K (2002b) Timing and style of late Quaternary glaciation in the eastern Hindu Kush, Chitral, northern Pakistan: a review and revision of the glacial chronology based on new optically stimulated luminescence dating. Quat Int 97-98:41–56

    Article  Google Scholar 

  • Owen LA, Finkel RC, Ma H, Spencer JQ, Derbyshire E, Barnard PL, Caffee MW (2003a) Timing and style of late Quaternary glaciations in NE Tibet. Geol Soc Am Bull 11:1356–1364

    Article  Google Scholar 

  • Owen LA, Ma H, Derbyshire E, Spencer JQ, Barnard PL, Nian ZY, Finkel RC, Caffee MW (2003b) The timing and style of late Quaternary glaciation in the La Ji Mountains, NE Tibet: evidence for restricted glaciation during the latter part of the last glacial. Z Geomorphol 130:263–276

    Google Scholar 

  • Owen LA, Finkel RC, Barnard PL, Ma H, Asahi K, Caffee MW, Derbyshire E (2005) Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating. Quat Sci Rev 24:1391–1411

    Article  Google Scholar 

  • Owen LA, Caffee M, Bovard K, Finkel RC, Sharma M (2006a) Terrestrial cosmogenic surface exposure dating of the oldest glacial successions in the Himalayan orogen. Geol Soc Am Bull 118:383–392

    Article  Google Scholar 

  • Owen LA, Finkel RC, Ma H, Barnard PL (2006b) Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: a framework for examining the links between glaciation, lake level changes and alluvial fan formation. Quat Int 154-155:73–86

    Article  Google Scholar 

  • Owen LA, Caffee MW, Finkel RC, Seong YB (2008) Quaternary glaciation of the Himalayan–Tibetan orogen. J Quat Sci 23:513–532

    Article  Google Scholar 

  • Owen LA, Robinson R, Benn DI, Finkel RC, Davis NK, Yi C, Putkonen J, Li D, Murray AS (2009) Quaternary glaciation of Mount Everest. Quat Sci Rev 28:1412–1433

    Article  Google Scholar 

  • Owen LA, Yi C, Finkel RC, Davis N (2010) Quaternary glaciation of Gurla Mandata (Naimon’anyi). Quat Sci Rev 29:1817–1830

    Article  Google Scholar 

  • Owen LA, Chen J, Hedrick KA, Caffee MW, Robinson A, Schoenbohm LM, Zhaode Y, Li W, Imrecke D, Liu J (2012) Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir. Quat Sci Rev 47:56–72

    Article  Google Scholar 

  • Phillips WM, Sloan VF, Shroder JF Jr, Sharma P, Clarke ML, Rendell HM (2000) Asynchronous glaciation at Nanga Parbat, northwestern Himalaya Mountains, Pakistan. Geology 28:431–434

    Google Scholar 

  • Porter SC (1970) Quaternary glacial record in the Swat Kohistan, West Pakistan. Geol Soc Am Bull 81:1421–1446

    Article  Google Scholar 

  • Richards BWM, Owen LA, Rhodes EJ (2000) Timing of late Quaternary glaciations in the Himalayas of northern Pakistan. J Quat Sci 15:283–297

    Article  Google Scholar 

  • Röthlisberger F, Geyh MA (1985a) Gletscherschwankungen der letzten 10.000 Jahre – Ein Verleich zwischen Nord- und Südhemisphare (Alpen, Himalaya, Alaska, Südamerika, Neuseeland). Verlag Sauerländer, Aarau

    Google Scholar 

  • Röthlisberger F, Geyh M (1985b) Glacier variations in Himalayas and Karakoram. Z Gletscherk Glazialgeol 21:237–249

    Google Scholar 

  • Rowan AV (2017) The ‘Little Ice Age’ in the Himalaya: A review of glacier advance driven by Northern Hemisphere temperature change. The Holocene 27:292–308

    Article  Google Scholar 

  • Rutter NW (1995) Problematic ice sheets. Quat Int 28:19–37

    Article  Google Scholar 

  • Saha S, Owen LA, Orr EN, Caffee MW (2018) Timing and nature of Holocene glacier advances at the northwestern end of the Himalayan-Tibetan orogen. Quat Sci Rev 187:177–202

    Article  Google Scholar 

  • Saha S, Owen LA, Orr EN, Caffee MW (2019) High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen. Quat Sci Revs. https://doi.org/10.1016/j.quascirev.2019.07.021. (in press)

    Article  Google Scholar 

  • Schäfer JM, Tschudi S, Zhao Z, Wu X, Ivy-Ochs S, Wieler R, Baur H, Kubik PW, Schluchter C (2002) The limited influence of glaciations in Tibet on global climate over the past 170000 yr. Earth Planet Sci Lett 194:287–297

    Article  Google Scholar 

  • Schäfer JM, Oberholzer P, Zhao ZZ, Ivy-Ochs S, Wieler R, Baur H, Kubik PW, Schluchter C (2008) Cosmogenic beryllium-10 and neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal Himalayas. Quat Sci Rev 27:295–311

    Article  Google Scholar 

  • Sen SM, Kansal A (2019) Achieving water security in rural Indian Himalayas. J Environ Manag 245:398–408

    Google Scholar 

  • Seong YB, Owen LA, Bishop MP, Bush A, Clendon P, Copland P, Finkel RC, Kamp U, Shroder JF (2007) Quaternary glacial history of the Central Karakoram. Quat Sci Rev 26:3384–3405

    Article  Google Scholar 

  • Seong YB, Owen LA, Bishop MP, Bush A, Clendon P, Copland P, Finkel RC, Kamp U, Shroder JF (2008) Reply to comments by Matthias Kuhle on Seong YB, Owen LA, Bishop MP, Bush A, Clendon P, Copland P, Finkel RC, Kamp U, Shroder JF, (2007) Quaternary Glacial History of the Central Karakoram. Quat Sci Rev 27:1656–1658

    Google Scholar 

  • Seong YB, Owen LA, Yi C, Finkel RC (2009) Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geol Soc Am Bull 121:348–365

    Article  Google Scholar 

  • Saha S, Owen LA, Orr EN, Caffee MW (2018b) Timing and nature of Holocene glacier advances at the northwestern end of the Himalayan-Tibetan orogen. Quat Sci Rev 187:177–202

    Article  Google Scholar 

  • Sharma MC, Owen LA (1996) Quaternary glacial history of NW Garhwal Himalayas. Quat Sci Rev 15:335–365

    Article  Google Scholar 

  • Shi Y, Zheng B, Li S (1992) Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: a controversy to M. Kuhle’s ice sheet hypothesis. Z Geomorphol 84:19–35

    Google Scholar 

  • Shiraiwa T, Watanabe T (1991) Late Quaternary glacial fluctuations in the Langtang Valley, Nepal Himalaya, reconstructed by relative dating methods. Arct Alp Res 23:404–416

    Article  Google Scholar 

  • Solomina O, Bradley RS, Hodgson DA, Ivy-Ochs S, Jomelli V, Mackintosh AN, Nesje A, Owen LA, Wanner H, Wiles GC, Young NE (2015) Holocene glacier fluctuations. Invited review. Quat Sci Rev 111:9–34

    Article  Google Scholar 

  • Solomina O, Bradley R, Jomelli V, Geirsdottir A, Kaufman D, Koch J, McKay NP, Masiokas M, Miller G, Nesje A, Nicolussi K, Owen LA, Putnam AE, Wanner H, Wiles G, Yan B (2016) Glacier fluctuations during the past 2000 years. Quat Sci Rev 149:61–90

    Article  Google Scholar 

  • Spencer JQ, Owen LA (2004) Optically stimulated luminescence dating of late Quaternary glaciogenic sediments in the upper Hunza valley: validating the timing of glaciation and assessing dating methods. Quat Sci Rev 23:175–191

    Article  Google Scholar 

  • Taylor PJ, Mitchell WA (2000) Late Quaternary glacial history of the Zanskar Range, North-west Indian Himalaya. Quat Int 65(66):81–100

    Article  Google Scholar 

  • Thackray GD, Owen LA, Yi C (2008) Timing and nature of late Quaternary mountain glaciation. J Quat Sci 23:503–508

    Article  Google Scholar 

  • Van der Woerd J, Owen LA, Tapponnier P, Xiwei X, Kervyn F, Finkel RC, Barnard PL (2004) Giant, M~8 earthquake-triggered, ice avalanches in the eastern Kunlun Shan (Northern Tibet): characteristics, nature and dynamics. Geol Soc Am Bull 116:394–406

    Article  Google Scholar 

  • Watanabe T, Shiraiwa T, Ono Y (1989) Distribution of periglacial landforms in the Langtang Valley, Nepal Himalaya. Bull Glacier Res 7:209–220

    Google Scholar 

  • Yan Q, Owen LA, Wang H, Zhang Z, Sun J (2018) Climate constrains glacier advance over high Mountain Asia during the last glacial maximum. Earth Planet Sci Lett 45:9024–9033

    Google Scholar 

  • Yi C, Chen H, Yang J, Liu B, Fu P, Liu K, Li S (2008) Review of Holocene glacial chronologies based on radiocarbon dating in Tibet and its surrounding mountains. J Quat Sci 23:533–558

    Article  Google Scholar 

  • Zech W, Glaser B, Sosin P, Kubik PW, Zech W (2003) Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains (Tajikistan) from 10Be surface exposure dating. Earth Planet Sci Lett 237:453–461

    Article  Google Scholar 

  • Zech R, Abramowski U, Glaser B, Sosin P, Kubik PW, Zech W (2005) Late Quaternary glacier and climate history of the Pamir Mountains derived from cosmogenic 10Be exposure ages. Quat Res 64:212–220

    Article  Google Scholar 

  • Zheng B, Rutter N (1998) On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) plateau. Quat Int 45(46):109–122

    Google Scholar 

  • Zhou S, Li J, Zhao J, Wang J, Zheng J (2011) Quaternary glaciations: extent and chronology in China. In: Elhers J, Gibbard P, Hughes PD (eds) Quaternary glaciations – extent and chronology: a closer look, Dev Quat Sci, vol 15, 2nd edn. Elsevier, Amsterdam, pp 981–1002

    Google Scholar 

Download references

Acknowledgments

Many thanks to two anonymous reviewers for their very useful and constructive comments and Dr. A.P. Dimri for encouraging me to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis A. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owen, L.A. (2020). Quaternary Glaciation of the Himalaya and Adjacent Mountains. In: Dimri, A., Bookhagen, B., Stoffel, M., Yasunari, T. (eds) Himalayan Weather and Climate and their Impact on the Environment . Springer, Cham. https://doi.org/10.1007/978-3-030-29684-1_13

Download citation

Publish with us

Policies and ethics