Skip to main content

Dynamic Transition Theory

  • Chapter
  • First Online:
Phase Transition Dynamics
  • 1097 Accesses

Abstract

This chapter introduces the dynamic transition theory for nonlinear dissipative systems developed recently by the authors. The main focus is to derive a general principle, Principle 1, on dynamic transitions for dissipative systems and to introduce a systematic theory and techniques for studying the types and structure of dynamic transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We follow here the notation used in Ma and Wang (2005b). In particular, a linear operator L : X 1 → X is called a completely continuous field if L = −A + B : X 1 → X, A : X 1 → X is a linear homeomorphism, and B : X 1 → X is a linear compact operator. Also, we refer the interested readers to classical books, e.g., Kato (1995), for the basic knowledge of linear operators, and to Henry (1981) and Pazy (1983) for semigroups of linear operators and sectorial operators.

References

  • Andronov, A. A., E. A. Leontovich, I. I. Gordon, and A. G. Maı̆er (1973). Theory of bifurcations of dynamic systems on a plane. Halsted Press [A division of John Wiley & Sons], New York-Toronto, Ont. Translated from the Russian.

    Google Scholar 

  • Batiste, O., E. Knobloch, A. Alonso, and I. Mercader (2006). Spatially localized binary-fluid convection. J. Fluid Mech. 560, 149–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Chekroun, M., H. Liu, and S. Wang (2014a). Approximation of Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I. Springer Briefs in Mathematics. Springer, New York.

    Google Scholar 

  • Chekroun, M., H. Liu, and S. Wang (2014b). Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II. Springer Briefs in Mathematics. Springer, New York.

    Google Scholar 

  • Choi, Y., T. Ha, J. Han, and D. S. Lee (2017). Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems-Series B 22(7).

    Google Scholar 

  • Choi, Y., J. Han, and C.-H. Hsia (2015). Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete Contin. Dyn. Syst. Ser. B 20(7), 1933–1957.

    MathSciNet  MATH  Google Scholar 

  • Choi, Y., J. Han, and J. Park (2015). Dynamical bifurcation of the generalized Swift–Hohenberg equation. International Journal of Bifurcation and Chaos 25(08), 1550095.

    Article  MathSciNet  MATH  Google Scholar 

  • Chow, S. N. and J. K. Hale (1982). Methods of bifurcation theory, Volume 251 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Crandall, M. G. and P. H. Rabinowitz (1977). The Hopf bifurcation theorem in infinite dimensions. Arch. Rational Mech. Anal. 67(1), 53–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Dijkstra, H., T. Sengul, J. Shen, and S. Wang (2015). Dynamic transitions of quasi-geostrophic channel flow. SIAM Journal on Applied Mathematics 75(5), 2361–2378.

    Article  MathSciNet  MATH  Google Scholar 

  • Dijkstra, H., T. Sengul, and S. Wang (2013). Dynamic transitions of surface tension driven convection. Physica D: Nonlinear Phenomena 247(1), 7–17.

    Article  MathSciNet  MATH  Google Scholar 

  • Field, M. (1996). Lectures on bifurcations, dynamics and symmetry, Volume 356 of Pitman Research Notes in Mathematics Series. Harlow: Longman.

    MATH  Google Scholar 

  • Foiaş, C. and R. Temam (1979). Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J. Math. Pures Appl. (9) 58(3), 339–368.

    Google Scholar 

  • Golubitsky, M. and D. G. Schaeffer (1985). Singularities and groups in bifurcation theory. Vol. I, Volume 51 of Applied Mathematical Sciences. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Guckenheimer, J. and P. Holmes (1990). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Volume 42 of Applied Mathematical Sciences. New York: Springer-Verlag. Revised and corrected reprint of the 1983 original.

    Google Scholar 

  • Hale., J. (1988). Asymptotic behaviour of dissipative systems. AMS Providence RI.

    Google Scholar 

  • Han, D., M. Hernandez, and Q. Wang (2018). Dynamical transitions of a low-dimensional model for Rayleigh–Bénard convection under a vertical magnetic field. Chaos, Solitons & Fractals 114, 370–380.

    Article  MathSciNet  MATH  Google Scholar 

  • Han, J. and C.-H. Hsia (2012). Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Dis. Cont. Dyn. Sys. B 17, 2431–2449.

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, D. (1981). Geometric theory of semilinear parabolic equations, Volume 840 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Hernández, M. and K. W. Ong (2018). Stochastic Swift-Hohenberg equation with degenerate linear multiplicative noise. Journal of Mathematical Fluid Mechanics, 1–20.

    Google Scholar 

  • Hopf, E. (1942). Abzweigung einer periodischen Lösung von einer stationaren Lösung eines differentialsystems. Ber. Math.-Phys. K. Sachs. Akad. Wiss. Leipzig 94, 1–22.

    MATH  Google Scholar 

  • Hou, Z. and T. Ma (2013). Dynamic phase transition for the Taylor problem in the wide-gap case. Bound. Value Probl., 2013:227, 13.

    MathSciNet  MATH  Google Scholar 

  • Johnson, M. A., P. Noble, L. M. Rodrigues, Z. Yang, and K. Zumbrun (2019). Spectral stability of inviscid roll waves. Comm. Math. Phys. 367(1), 265–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, T. (1995). Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer-Verlag. Reprint of the 1980 edition.

    Book  MATH  Google Scholar 

  • Kieu, C., T. Sengul, Q. Wang, and D. Yan (2018). On the Hopf (double Hopf) bifurcations and transitions of two-layer western boundary currents. Communications in Nonlinear Science and Numerical Simulation.

    Google Scholar 

  • Krasnosel’skii, M. A. (1956). Topologicheskie metody v teorii nelineinykh integralnykh uravnenii. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow.

    Google Scholar 

  • Kuznetsov, Y. A. (2004). Elements of applied bifurcation theory (Third ed.), Volume 112 of Applied Mathematical Sciences. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Li, D. and Z.-Q. Wang (2018). Local and global dynamic bifurcations of nonlinear evolution equations. Indiana Univ. Math. J. 67(2), 583–621.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J. (2017, Aug). Dynamic bifurcation for the granulation convection in the solar photosphere. Boundary Value Problems 2017(1), 110.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, L., M. Hernandez, and K. W. Ong (2018). Stochastic attractor bifurcation for the two-dimensional Swift-Hohenberg equation. Mathematical Methods in the Applied Sciences 41(5), 2105–2118.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, L. and K. W. Ong (2016). Dynamic transitions of generalized Burgers equation. J. Math. Fluid Mech. 18(1), 89–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, H., T. Sengul, and S. Wang (2012a). Dynamic transitions for quasilinear systems and Cahn-Hilliard equation with Onsager mobility. Journal of Mathematical Physics 53(2), 023518.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, H., T. Sengul, S. Wang, and P. Zhang (2015). Dynamic transitions and pattern formations for a Cahn–Hilliard model with long-range repulsive interactions. Communications in Mathematical Sciences 13(5), 1289–1315.

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, H., Q. Wang, and T. Ma (2015a). A predicable condition for boundary layer separation of 2-D incompressible fluid flows. Nonlinear Anal. Real World Appl. 22, 336–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, T. and S. Wang (2004b). Dynamic bifurcation and stability in the Rayleigh-Bénard convection. Commun. Math. Sci. 2(2), 159–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, T. and S. Wang (2005a). Bifurcation and stability of superconductivity. J. Math. Phys. 46(9), 095112, 31.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.

    Google Scholar 

  • Ma, T. and S. Wang (2005c). Dynamic bifurcation of nonlinear evolution equations. Chinese Ann. Math. Ser. B 26(2), 185–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.

    Book  MATH  Google Scholar 

  • Ma, T. and S. Wang (2007b). Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, Beijing.

    Google Scholar 

  • Ma, T. and S. Wang (2008d). Exchange of stabilities and dynamic transitions. Georgian Mathematics Journal 15:3, 581–590.

    MathSciNet  MATH  Google Scholar 

  • Marsden, J. E. and M. McCracken (1976). The Hopf bifurcation and its applications. New York: Springer-Verlag. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale, Applied Mathematical Sciences, Vol. 19.

    Google Scholar 

  • Nirenberg, L. (1981). Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. (N.S.) 4(3), 267–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Nirenberg, L. (2001). Topics in nonlinear functional analysis, Volume 6 of Courant Lecture Notes in Mathematics. New York: New York University Courant Institute of Mathematical Sciences. Chapter 6 by E. Zehnder, Notes by R. A. Artino, Revised reprint of the 1974 original.

    Google Scholar 

  • Ong, K. W. (2016). Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems-Series B 21(4).

    Google Scholar 

  • Özer, S. and T. Şengül (2016). Stability and transitions of the second grade Poiseuille flow. Physica D: Nonlinear Phenomena 331, 71–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Özer, S. and T. Şengül (2018, Jun). Transitions of spherical thermohaline circulation to multiple equilibria. Journal of Mathematical Fluid Mechanics 20(2), 499–515.

    Article  MathSciNet  MATH  Google Scholar 

  • Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations, Volume 44 of Applied Mathematical Sciences. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Peng, C. (2018). Attractor bifurcation and phase transition for liquid 4He. Acta Math. Appl. Sin. Engl. Ser. 34(2), 318–329.

    MathSciNet  Google Scholar 

  • Peres Hari, L., J. Rubinstein, and P. Sternberg (2013). Kinematic and dynamic vortices in a thin film driven by an applied current and magnetic field. Phys. D 261, 31–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Perko, L. (1991). Differential equations and dynamical systems, Volume 7 of Texts in Applied Mathematics. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Rabinowitz, P. H. (1971). Some global results for nonlinear eigenvalue problems. J. Functional Analysis 7, 487–513.

    Article  MathSciNet  MATH  Google Scholar 

  • Sattinger, D. H. (1978). Group representation theory, bifurcation theory and pattern formation. J. Funct. Anal. 28(1), 58–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Sattinger, D. H. (1979). Group-theoretic methods in bifurcation theory, Volume 762 of Lecture Notes in Mathematics. Berlin: Springer. With an appendix entitled “How to find the symmetry group of a differential equation” by Peter Oliver.

    Google Scholar 

  • Sattinger, D. H. (1980). Bifurcation and symmetry breaking in applied mathematics. Bull. Amer. Math. Soc. (N.S.) 3(2), 779–819.

    Article  MathSciNet  MATH  Google Scholar 

  • Sattinger, D. H. (1983). Branching in the presence of symmetry, Volume 40 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

    Google Scholar 

  • Sengul, T., J. Shen, and S. Wang (2015). Pattern formations of 2d Rayleigh–Bénard convection with no-slip boundary conditions for the velocity at the critical length scales. Mathematical Methods in the Applied Sciences 38(17), 3792–3806.

    Article  MathSciNet  MATH  Google Scholar 

  • Sengul, T. and S. Wang (2013). Pattern formation in Rayleigh–Bénard convection. Communications in Mathematical Sciences 11(1), 315–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Sengul, T. and S. Wang (2014). Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis 13(6), 2609–2639.

    Article  MathSciNet  MATH  Google Scholar 

  • Şengül, T. and S. Wang (2018). Dynamic transitions and baroclinic instability for 3d continuously stratified Boussinesq flows. Journal of Mathematical Fluid Mechanics, 1–21.

    Google Scholar 

  • Temam, R. (1997). Infinite-dimensional dynamical systems in mechanics and physics (Second ed.), Volume 68 of Applied Mathematical Sciences. New York: Springer-Verlag.

    Google Scholar 

  • Wang, Q. (2014). Stability and bifurcation of a viscous incompressible plasma fluid contained between two concentric rotating cylinders. Discrete & Continuous Dynamical Systems-Series B 19(2).

    Google Scholar 

  • Wang, Q., H. Luo, and T. Ma (2015a). Boundary layer separation of 2-D incompressible Dirichlet flows. Discrete Contin. Dyn. Syst. Ser. B 20(2), 675–682.

    MathSciNet  MATH  Google Scholar 

  • Wang, Q. and H. Wang (2016). The dynamical mechanism of jets for AGN. Discrete Contin. Dyn. Syst. Ser. B 21(3), 943–957.

    MathSciNet  MATH  Google Scholar 

  • Wang, S. and P. Yang (2013). Remarks on the Rayleigh-Benard convection on spherical shells. Journal of Mathematical Fluid Mechanics 15(3), 537–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos, Volume 2 of Texts in Applied Mathematics. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Yadome, M., Y. Nishiura, and T. Teramoto (2014). Robust pulse generators in an excitable medium with jump-type heterogeneity. SIAM J. Appl. Dyn. Syst. 13(3), 1168–1201.

    Article  MathSciNet  MATH  Google Scholar 

  • Yarahmadian, S. and M. Yari (2014). Phase transition analysis of the dynamic instability of microtubules. Nonlinearity 27(9), 2165.

    Article  MathSciNet  MATH  Google Scholar 

  • Yari, M. (2015). Transition of patterns in the cell-chemotaxis system with proliferation source. Nonlinear Anal. 117, 124–132.

    Article  MathSciNet  MATH  Google Scholar 

  • You, H., R. Yuan, and Z. Zhang (2013). Attractor bifurcation for extended Fisher-Kolmogorov equation. Abstr. Appl. Anal., Art. ID 365436, 11.

    Google Scholar 

  • Zhang, D. and R. Liu (2018). Dynamical transition for s-k-t biological competing model with cross-diffusion. Mathematical Methods in the Applied Sciences 41(12), 4641–4658.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H., K. Jiang, and P. Zhang (2014). Dynamic transitions for Landau-Brazovskii model. Discrete & Continuous Dynamical Systems-Series B 19(2).

    Google Scholar 

  • Zhang, Q. and H. Luo (2013). Attractor bifurcation for the extended Fisher-Kolmogorov equation with periodic boundary condition. Bound. Value Probl., 2013:169, 13.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, T., Wang, S. (2019). Dynamic Transition Theory. In: Phase Transition Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-29260-7_2

Download citation

Publish with us

Policies and ethics