Skip to main content

Receptors for Targeting Growth Factors for Treatment of Cancers

  • Chapter
  • First Online:
Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis

Abstract

Growth factor receptors (GFR) are expressed on cell membranes or in the cytoplasm and play a major role in cell growth, survival, angiogenesis, and metastasis. Tumor growth and cell survival are composed of dodging apoptotic signals in cancer cells. The growth of cells is further supported by angiogenesis and metastasis to distant organs. Elevated expression of growth factor receptors contributes to the development of drug resistance. Therefore, therapeutics to target GFRs is a potentially attractive molecular approach to treat cancer more effectively. In this review, we have discussed the contribution of growth factor receptors to cancer development and thereby their subsequent molecular targets for novel drugs developed leading to inhibition of growth factor receptor-mediated pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMP:

Bone morphogenetic protein

CDK:

Cell cycle-regulated kinases

CRC:

Colorectal cancer

DOX:

Doxorubicin

ECD:

Extracellular domain

EMT:

Epithelial-mesenchymal transition

FGF:

Fibroblast growth factor

FST:

Follistatin

GAB:

Grb2-associated binding protein

GAS:

Growth arrest specific protein

GBM:

Glioblastoma multiforme

GH:

Growth hormone

GMP:

Gemcitabine monophosphate

HUVEC:

Human umbilical vein endothelial cells

IL:

Interleukin

ILGF:

Insulin-like growth factor

IONP:

Iron oxide nanoparticles

IPT:

Immunoglobulin-like plexin-transcription

IR:

Insulin receptor

JMD:

Juxtamembrane domains

JNK:

Jun N-terminal kinase

mAbs:

Monoclonal antibodies

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinases

MRI:

Magnetic resonance imaging

MSN:

Mesoporous silica nanoparticles

mTOR:

Mammalian target of rapamycin

MVD:

Microvessel density

NFkβ:

Nuclear factor kappa-light-chain-Enhancer of activated β cells

NMOF:

Amino-triphenyl dicarboxylate-bridged Zr4+ metal-organic framework nanoparticles

PDGF:

Platelet-derived growth factor

PEI:

Polyethylenimine

PI3k:

Phospho-inositol 3 kinase

PlGF:

Placental growth factor

PSI:

Plexin-semaphorin-integrin

PTK:

Protein tyrosine kinase

RSK2:

Ribosomal protein S6 kinase 2

RTK:

Receptor tyrosine kinase

SCF:

Stem cell factor

SEMA:

Structural domain of semaphorins

SH2:

Src-homology-2 domain

SHC:

Src-homology-2 domain

SPARC:

Secreted protein acidic and rich in cysteine

SPIO:

Superparamagnetic iron oxide

STAT:

Signal transducer and activator of transcription

TGF:

Transforming growth factor

TMD:

Transmembrane domain

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

References

  1. Cross M, Dexter TM. Growth factors in development, transformation, and tumorigenesis. Cell. 1991;64(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  2. Nakanishi T, Markwald R, Baldwin H, Keller B, Srivastava D, Yamagishi H. Extracellular matrix remodeling in vascular development and disease. In: Etiology and morphogenesis of congenital heart disease: from gene function and cellular interaction to morphology; 2016. Springer, Tokyo.

    Google Scholar 

  3. Zhang X, Nie D, Chakrabarty S. Growth factors in tumor microenvironment. Front Biosci. 2010;15:151.

    Article  CAS  PubMed Central  Google Scholar 

  4. Tannock IF. Conventional cancer therapy: promise broken or promise delayed? Lancet. 1998;351:SII9–SII16.

    Article  PubMed  Google Scholar 

  5. Xiao Y, Tian Q, He J, Huang M, Yang C, Gong L. MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor. Onco Targets Ther. 2016;9:3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gonzalez A, Broussas M, Beau-Larvor C, Haeuw JF, Boute N, Robert A, et al. A novel antagonist anti-cMet antibody with antitumor activities targeting both ligand-dependent and ligand-independent c-Met receptors. Int J Cancer. 2016;139(8):1851–63.

    Article  CAS  PubMed  Google Scholar 

  7. Birchmeier C, Birchmeier W, Gherardi E, Woude GFV. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915.

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto K, Umitsu M, De Silva DM, Roy A, Bottaro DP. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci. 2017;108(3):296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rampa C, Tian E, Våtsveen TK, Buene G, Slørdahl TS, Børset M, et al. Identification of the source of elevated hepatocyte growth factor levels in multiple myeloma patients. Biomark Res. 2014;2(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pavelic J, Krizanac S, Kapitanovic S, Pavelic L, Samarzija M, Pavicic F, et al. The consequences of insulin-like growth factors/receptors dysfunction in lung cancer. Am J Respir Cell Mol Biol. 2005;32(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  11. Heldin C-H. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal. 2013;11(1):97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Massagué J. TGFβ in cancer. Cell. 2008;134(2):215–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gasparini G. Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 2000;5(Suppl 1):37–44.

    Article  CAS  PubMed  Google Scholar 

  14. Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34(2):280–300.

    Article  CAS  PubMed  Google Scholar 

  15. Savage NM, Johnson RC, Gotlib J, George TI. Myeloid and lymphoid neoplasms with FGFR1 abnormalities: diagnostic and therapeutic challenges. Am J Hematol. 2013;88(5):427–30.

    Article  CAS  PubMed  Google Scholar 

  16. Jin M, Kleinberg A, Cooke A, Gokhale PC, Foreman K, Dong H, et al. Potent and selective cyclohexyl-derived imidazopyrazine insulin-like growth factor 1 receptor inhibitors with in vivo efficacy. Bioorg Med Chem Lett. 2011;21(4):1176–80.

    Article  CAS  PubMed  Google Scholar 

  17. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657–60.

    Article  CAS  PubMed  Google Scholar 

  18. Safaie Qamsari E, Safaei Ghaderi S, Zarei B, Dorostkar R, Bagheri S, Jadidi-Niaragh F, et al. The c-Met receptor: implication for targeted therapies in colorectal cancer. Tumor Biol. 2017;39(5):1010428317699118.

    Article  CAS  Google Scholar 

  19. Gandino L, Longati P, Medico E, Prat M, Comoglio PM. Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J Biol Chem. 1994;269(3):1815–20.

    CAS  PubMed  Google Scholar 

  20. Cecchi F, Rabe DC, Bottaro DP. The hepatocyte growth factor receptor: structure, function and pharmacological targeting in cancer. Curr Signal Transduction Ther. 2011;6(2):146–51.

    Article  CAS  Google Scholar 

  21. Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, et al. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 2008;68(2):346–51.

    Article  CAS  PubMed  Google Scholar 

  22. Sachs M, Brohmann H, Zechner D, Müller T, Hülsken J, Walther I, et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol. 2000;150(6):1375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.

    Article  CAS  PubMed  Google Scholar 

  24. Montagner A, Yart A, Dance M, Perret B, Salles J-P, Raynal P. A novel role for Gab1 and SHP2 in epidermal growth factor-induced Ras activation. J Biol Chem. 2005;280(7):5350–60.

    Article  CAS  PubMed  Google Scholar 

  25. Heukers R, Altintas I, Raghoenath S, De Zan E, Pepermans R, Roovers RC, et al. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials. 2014;35(1):601–10.

    Article  CAS  PubMed  Google Scholar 

  26. Alibakhshi A, Kahaki FA, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, et al. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release. 2017;268:323–34.

    Article  CAS  PubMed  Google Scholar 

  27. Yang Z, Duan J, Wang J, Liu Q, Shang R, Yang X, et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int J Nanomedicine. 2018;13:1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang H, Wang Y, Bai M, Wang J, Zhu K, Liu R, et al. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor si RNA. Cancer Sci. 2018;109(3):629–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalus W, Zweckstetter M, Renner C, Sanchez Y, Georgescu J, Grol M, et al. Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions. EMBO J. 1998;17(22):6558–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keyhanfar M, Booker GW, Whittaker J, Wallace JC, Forbes BE. Precise mapping of an IGF-I-binding site on the IGF-1R. Biochem J. 2007;401(1):269–77.

    Article  CAS  PubMed  Google Scholar 

  31. Cabail MZ, Li S, Lemmon E, Bowen ME, Hubbard SR, Miller WT. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nat Commun. 2015;6:6406.

    Article  CAS  PubMed  Google Scholar 

  32. Lee J, Pilch PF. The insulin receptor: structure, function, and signaling. Am J Phys Cell Phys. 1994;266(2):C319–C34.

    Article  CAS  Google Scholar 

  33. De Meyts P, Sajid W, Palsgaard J, Theede A-M, Gauguin L, Aladdin H, et al. Insulin and IGF-I receptor structure and binding mechanism. In: Mechanisms of insulin action. Springer; 2007. p. 1–32. Landes Bioscience, Austin.

    Google Scholar 

  34. Abdullahi AD, Abdualkader AM, Abdulsamat NB, Ingale K. Application of group-based QSAR and molecular docking in the design of insulin-like growth factor antagonists. Trop J Pharm Res. 2015;14(6):941–51.

    Article  CAS  Google Scholar 

  35. Jafari R, Majidi Zolbanin N, Majidi J, Atyabi F, Yousefi M, Jadidi-Niaragh F, et al. Anti-Mucin1 Aptamer-conjugated Chitosan nanoparticles for targeted co-delivery of Docetaxel and IGF-1R siRNA to SKBR3 metastatic breast cancer cells. Iran Biomed J. 2019;23:21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shali H, Shabani M, Pourgholi F, Hajivalili M, Aghebati-Maleki L, Jadidi-Niaragh F, et al. Co-delivery of insulin-like growth factor 1 receptor specific siRNA and doxorubicin using chitosan-based nanoparticles enhanced anticancer efficacy in A549 lung cancer cell line. Artif Cells Nanomed Biotechnol. 2018;46(2):293–302.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou H, Qian W, Uckun FM, Wang L, Wang YA, Chen H, et al. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano. 2015;9(8):7976–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Q, Pan J, Lubet RA, Wang Y, You M. Targeting the insulin-like growth factor-1 receptor by picropodophyllin for lung cancer chemoprevention. Mol Carcinog. 2015;54(S1):E129–E37.

    Article  CAS  PubMed  Google Scholar 

  39. Magnusson PU, Looman C, Åhgren A, Wu Y, Claesson-Welsh L, Heuchel RL. Platelet-derived growth factor receptor-β constitutive activity promotes angiogenesis in vivo and in vitro. Arterioscler Thromb Vasc Biol. 2007;27(10):2142–9.

    Article  CAS  PubMed  Google Scholar 

  40. Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M. Two highly related regulatory subunits of PP2A exert opposite effects on TGF-β/Activin/Nodal signalling. Development. 2008;135(17):2927–37.

    Article  CAS  PubMed  Google Scholar 

  41. Bai A, Meetze K, Vo NY, Kollipara S, Govek E, Winston WM, et al. GP369, an FGFR2-IIIb specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR2 signaling. Cancer Res. 2010;70:7630. canres. 1489.2010.

    Article  CAS  PubMed  Google Scholar 

  42. Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM, et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-β type I receptor kinase inhibitor. Cancer Res. 2006;66(13):6714–21.

    Article  CAS  PubMed  Google Scholar 

  43. Shim AH-R, Liu H, Focia PJ, Chen X, Lin PC, He X. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex. Proc Natl Acad Sci. 2010;107(25):11307–12.

    Article  CAS  PubMed  Google Scholar 

  44. Chen X, Liu H, Focia PJ, Shim AH-R, He X. Structure of macrophage colony stimulating factor bound to FMS: diverse signaling assemblies of class III receptor tyrosine kinases. Proc Natl Acad Sci. 2008;105(47):18267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell. 2007;130(2):323–34.

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Leo C, Chen X, Wong BR, Williams LT, Lin H, et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta-Proteins and Proteomics. 2012;1824(7):938–45.

    Article  CAS  Google Scholar 

  47. Chen P-H, Chen X, He X. Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta-Proteins and Proteomics. 2013;1834(10):2176–86.

    Article  CAS  Google Scholar 

  48. Ekman S, Thuresson ER, Heldin C-H, RoÈnnstrand L. Increased mitogenicity of an αβ heterodimeric PDGF receptor complex correlates with lack of RasGAP binding. Oncogene. 1999;18(15):2481.

    Article  CAS  PubMed  Google Scholar 

  49. Heidaran M, Pierce J, Jensen R, Matsui T, Aaronson S. Chimeric alpha-and beta-platelet-derived growth factor (PDGF) receptors define three immunoglobulin-like domains of the alpha-PDGF receptor that determine PDGF-AA binding specificity. J Biol Chem. 1990;265(31):18741–4.

    CAS  PubMed  Google Scholar 

  50. Yang Y, Yuzawa S, Schlessinger J. Contacts between membrane proximal regions of the PDGF receptor ectodomain are required for receptor activation but not for receptor dimerization. Proc Natl Acad Sci. 2008;105(22):7681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heldin C-H, Östman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta-reviews on cancer. 1998;1378(1):F79–F113.

    Article  CAS  Google Scholar 

  52. Baxter RM, Secrist JP, Vaillancourt RR, Kazlauskas A. Full activation of the platelet-derived growth factor β-receptor kinase involves multiple events. J Biol Chem. 1998;273(27):17050–5.

    Article  CAS  PubMed  Google Scholar 

  53. Hubbard SR. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5(6):464.

    Article  CAS  PubMed  Google Scholar 

  54. Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF. Molecular interaction of poly (acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano. 2012;6(10):8962–9.

    Article  CAS  PubMed  Google Scholar 

  55. Rejeeth C, Vivek R, NipunBabu V, Sharma A, Ding X, Qian K. Cancer nanomedicine: from PDGF targeted drug delivery. MedChemComm. 2017;8(11):2055–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patil R, Portilla-Arias J, Ding H, Inoue S, Konda B, Hu J, et al. Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly (β-L-malic acid). Pharm Res. 2010;27(11):2317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller K, Dixit S, Bredlau A-L, Moore A, McKinnon E, Broome A-M. Delivery of a drug cache to glioma cells overexpressing platelet-derived growth factor receptor using lipid nanocarriers. Nanomedicine. 2016;11(6):581–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ninomiya K, Yamashita T, Kawabata S, Shimizu N. Targeted and ultrasound-triggered drug delivery using liposomes co-modified with cancer cell-targeting aptamers and a thermosensitive polymer. Ultrason Sonochem. 2014;21(4):1482–8.

    Article  CAS  PubMed  Google Scholar 

  59. Pietras K, Rubin K, Sjöblom T, Buchdunger E, Sjöquist M, Heldin C-H, et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002;62(19):5476–84.

    CAS  PubMed  Google Scholar 

  60. Wieser R, Wrana J, Massague J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J. 1995;14(10):2199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Charng M-J, Kinnunen P, Hawker J, Brand T, Schneider MD. FKBP-12 recognition is dispensable for signal generation by type I transforming growth factor-β receptors. J Biol Chem. 1996;271(38):22941–4.

    Article  CAS  PubMed  Google Scholar 

  62. Souchelnytskyi S, Ten Dijke P, Miyazono K, Heldin C. Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta1-induced cellular responses. EMBO J. 1996;15(22):6231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Heldin C-H, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 2016;8(8):a022053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.

    Article  CAS  PubMed  Google Scholar 

  65. Saitoh M, Nishitoh H, Amagasa T, Miyazono K, Takagi M, Ichijo H. Identification of important regions in the cytoplasmic juxtamembrane domain of type I receptor that separate signaling pathways of transforming growth factor-β. J Biol Chem. 1996;271(5):2769–75.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang B, Halder SK, Zhang S, Datta PK. Targeting transforming growth factor-β signaling in liver metastasis of colon cancer. Cancer Lett. 2009;277(1):114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ehrlich M, Gutman O, Knaus P, Henis YI. Oligomeric interactions of TGF-β and BMP receptors. FEBS Lett. 2012;586(14):1885–96.

    Article  CAS  PubMed  Google Scholar 

  68. Radaev S, Zou Z, Huang T, Lafer EM, Hinck AP, Sun PD. Ternary complex of TGF-β1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. J Biol Chem. 2010;285:14806. jbc.M109.079921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-β receptor. Nature. 1994;370(6488):341.

    Article  CAS  PubMed  Google Scholar 

  70. Wang T, Li B-Y, Danielson PD, Shah PC, Rockwell S, Lechleider RJ, et al. The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell. 1996;86(3):435–44.

    Article  CAS  PubMed  Google Scholar 

  71. Chen YG, Liu F, Massagué J. Mechanism of TGFβ receptor inhibition by FKBP12. EMBO J. 1997;16(13):3866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huse M, Chen Y-G, Massagué J, Kuriyan J. Crystal structure of the cytoplasmic domain of the type I TGF β receptor in complex with FKBP12. Cell. 1999;96(3):425–36.

    Article  CAS  PubMed  Google Scholar 

  73. Huse M, Muir TW, Xu L, Chen Y-G, Kuriyan J, Massagué J. The TGFβ receptor activation process: an inhibitor-to substrate-binding switch. Mol Cell. 2001;8(3):671–82.

    Article  CAS  PubMed  Google Scholar 

  74. Gotoh N, Laks S, Nakashima M, Lax I, Schlessinger J. FRS2 family docking proteins with overlapping roles in activation of MAP kinase have distinct spatial-temporal patterns of expression of their transcripts. FEBS Lett. 2004;564(1–2):14–8.

    Article  CAS  PubMed  Google Scholar 

  75. Sawyer JS, Anderson BD, Beight DW, Campbell RM, Jones ML, Herron DK, et al. Synthesis and activity of new aryl-and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. J Med Chem. 2003;46(19):3953–6.

    Article  CAS  PubMed  Google Scholar 

  76. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem. 2005;16(1):122–30.

    Article  CAS  PubMed  Google Scholar 

  77. Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc Natl Acad Sci. 2007;104(9):3460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou Q, Li Y, Zhu Y, Yu C, Jia H, Bao B, et al. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J Control Release. 2018;275:67–77.

    Article  CAS  PubMed  Google Scholar 

  79. Zhou C, Li J, Lin L, Shu R, Dong B, Cao D, et al. A targeted transforming growth factor-beta (TGF-β) blocker, TTB, inhibits tumor growth and metastasis. Oncotarget. 2018;9(33):23102.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nacif M, Shaker O. Targeting transforming growth factor-β (TGF-β) in cancer and non-neoplastic diseases. J Cancer Ther. 2014;5(07):735.

    Article  Google Scholar 

  81. Toth K, Dhar D, Wold WS. Oncolytic (replication-competent) adenoviruses as anticancer agents. Expert Opin Biol Ther. 2010;10(3):353–68.

    Article  CAS  PubMed  Google Scholar 

  82. Hu Z, Zhang Z, Guise T, Seth P. Systemic delivery of an oncolytic adenovirus expressing soluble transforming growth factor-β receptor II–Fc fusion protein can inhibit breast cancer bone metastasis in a mouse model. Hum Gene Ther. 2010;21(11):1623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  84. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011;437(2):169–83.

    Article  CAS  PubMed  Google Scholar 

  85. De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255(5047):989–91.

    Article  PubMed  Google Scholar 

  86. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin C-H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 1994;269(43):26988–95.

    CAS  PubMed  Google Scholar 

  87. Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012;2:a006502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, De Vos AM. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci. 1997;94(14):7192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. D’andrea LD, Del Gatto A, Pedone C, Benedetti E. Peptide-based molecules in angiogenesis. Chem Biol Drug Des. 2006;67(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  90. Finetti F, Basile A, Capasso D, Di Gaetano S, Di Stasi R, Pascale M, et al. Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. Biochem Pharmacol. 2012;84(3):303–11.

    Article  CAS  PubMed  Google Scholar 

  91. Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, et al. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Phys Heart Circ Phys. 2002;282(5):H1821–H7.

    CAS  Google Scholar 

  92. Martin F, Linden T, Katschinski DM, Oehme F, Flamme I, Mukhopadhyay CK, et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood. 2005;105(12):4613–9.

    Article  CAS  PubMed  Google Scholar 

  93. Feng W, Ye F, Xue W, Zhou Z, Kang YJ. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 2009;75(1):174–82.

    Article  CAS  PubMed  Google Scholar 

  94. Zhou Y, Bourcy K, Kang YJ. Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway. Cardiovasc Res. 2009;84(1):54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Christinger HW, Fuh G, de Vos AM, Wiesmann C. The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J Biol Chem. 2004;279(11):10382–8.

    Article  CAS  PubMed  Google Scholar 

  96. Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM. Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell. 1997;91(5):695–704.

    Article  CAS  PubMed  Google Scholar 

  97. Li B, Fuh G, Meng G, Xin X, Gerritsen ME, Cunningham B, et al. Receptor-selective variants of human vascular endothelial growth factor GENERATION AND CHARACTERIZATION. J Biol Chem. 2000;275(38):29823–8.

    Article  CAS  PubMed  Google Scholar 

  98. Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S. Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3). Structure. 2008;16(6):873–84.

    Article  CAS  PubMed  Google Scholar 

  99. Zou J, Wang YD, Ma FX, Xiang ML, Shi B, Wei YQ, et al. Detailed conformational dynamics of juxtamembrane region and activation loop in c-Kit kinase activation process. Proteins. 2008;72(1):323–32.

    Article  CAS  PubMed  Google Scholar 

  100. Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol. 2003;23(9):3067–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stuttfeld E, Ballmer-Hofer K. Structure and function of VEGF receptors. IUBMB Life. 2009;61(9):915–22.

    Article  CAS  PubMed  Google Scholar 

  102. Walter M, Lucet IS, Patel O, Broughton SE, Bamert R, Williams NK, et al. The 2.7 Å crystal structure of the autoinhibited human c-Fms kinase domain. J Mol Biol. 2007;367(3):839–47.

    Article  CAS  PubMed  Google Scholar 

  103. Shein SA, Kuznetsov II, Abakumova TO, Chelushkin PS, Melnikov PA, Korchagina AA, et al. VEGF-and VEGFR2-targeted liposomes for cisplatin delivery to glioma cells. Mol Pharm. 2016;13(11):3712–23.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Y, Schwerbrock NM, Rogers AB, Kim WY, Huang L. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol Ther. 2013;21(8):1559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhu R, Wang Z, Liang P, He X, Zhuang X, Huang R, et al. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@ LDH for anti-neuroblastoma therapy. Acta Biomater. 2017;63:163–80.

    Article  CAS  PubMed  Google Scholar 

  106. Chen W-H, Sung SY, Fadeev M, Cecconello A, Nechushtai R, Willner I. Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal–organic framework nanoparticles. Nanoscale. 2018;10(10):4650–7.

    Article  CAS  PubMed  Google Scholar 

  107. Coutelle O, Schiffmann L, Liwschitz M, Brunold M, Goede V, Hallek M, et al. Dual targeting of Angiopoietin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours. Br J Cancer. 2015;112(3):495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta-Molecular Cell Research. 2012;1823(4):850–60.

    Article  CAS  Google Scholar 

  109. Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 2005;16(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  110. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292–7.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family, part II. J Biol Chem. 2006;281(23): 15694–15700

    Article  CAS  PubMed  Google Scholar 

  112. Eswarakumar V, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  113. Ornitz DM, Herr AB, Nilsson M, Westman J, Svahn C-M, Waksman G. FGF binding and FGF receptor activation by synthetic heparan-derived di-and trisaccharides. Science. 1995;268(5209):432–6.

    Article  CAS  PubMed  Google Scholar 

  114. Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 2005;287(2):390–402.

    Article  CAS  PubMed  Google Scholar 

  115. Citores L, Khnykin D, Sorensen V, Weschle J, Klingenberg O, Wiedlocha A, et al. Modulation of intracellular transport of acidic fibroblast growth factor by mutations in the cytoplasmic receptor domain. J Cell Sci. 2001;114(9):1677–89.

    CAS  PubMed  Google Scholar 

  116. Knights V, Cook SJ. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther. 2010;125(1):105–17.

    Article  CAS  PubMed  Google Scholar 

  117. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mohammadi M, Honegger A, Rotin D, Fischer R, Bellot F, Li W, et al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol. 1991;11(10):5068–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Powers C, McLeskey S, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;7(3):165–97.

    Article  CAS  PubMed  Google Scholar 

  120. Mohammadi M, Dikic I, Sorokin A, Burgess W, Jaye M, Schlessinger J. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol. 1996;16(3):977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Furdui CM, Lew ED, Schlessinger J, Anderson KS. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell. 2006;21(5):711–7.

    Article  CAS  PubMed  Google Scholar 

  122. Tiong KH, Mah LY, Leong C-O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis. 2013;18(12):1447–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kouhara H, Hadari Y, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 1997;89(5):693–702.

    Article  CAS  PubMed  Google Scholar 

  124. Ong S, Hadari Y, Gotoh N, Guy G, Schlessinger J, Lax I. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci. 2001;98(11):6074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Foehr ED, Raffioni S, Fuji R, Bradshaw RA. FGF signal transduction in PC12 cells: comparison of the responses induced by endogenous and chimeric receptors. Immunol Cell Biol. 1998;76(5):406–13.

    Article  CAS  PubMed  Google Scholar 

  126. Szlachcic A, Zakrzewska M, Lobocki M, Jakimowicz P, Otlewski J. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy. Drug Des Devel Ther. 2016;10:2547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bhide RS, Lombardo LJ, Hunt JT, Cai Z-w, Barrish JC, Galbraith S, et al. The antiangiogenic activity in xenograft models of brivanib, a dual inhibitor of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinases. Mol Cancer Ther. 2010;9:369. 1535-7163. MCT-09-0472.

    Article  CAS  PubMed  Google Scholar 

  128. Martin LP, Sill M, Shahin MS, Powell M, DiSilvestro P, Landrum LM, et al. A phase II evaluation of AMG 102 (rilotumumab) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2014;132(3):526–30.

    Article  CAS  PubMed  Google Scholar 

  129. Balis FM, Thompson PA, Mosse YP, Blaney SM, Minard CG, Weigel BJ, et al. First-dose and steady-state pharmacokinetics of orally administered crizotinib in children with solid tumors: a report on ADVL0912 from the Children’s Oncology Group Phase 1/Pilot Consortium. Cancer Chemother Pharmacol. 2017;79(1):181–7.

    Article  CAS  PubMed  Google Scholar 

  130. Abou-Alfa GK, Meyer T, Cheng A-L, El-Khoueiry AB, Rimassa L, Ryoo B-Y, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tolcher AW, Sarantopoulos J, Patnaik A, Papadopoulos K, Lin C-C, Rodon J, et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor. Clin Oncol. 2007;25:1390.

    Article  CAS  Google Scholar 

  132. Di Cosimo S, Sathyanarayanan S, Bendell JC, Cervantes A, Stein MN, Braña I, et al. Combination of the mTOR inhibitor ridaforolimus and the anti-IGF1R monoclonal antibody dalotuzumab: preclinical characterization and phase I clinical trial. Clin Cancer Res. 2015;21(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  133. Wen PY, Yung WA, Lamborn KR, Dahia PL, Wang Y, Peng B, et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res. 2006;12(16):4899–907.

    Article  CAS  PubMed  Google Scholar 

  134. Shirley M. Olaratumab: first global approval. Drugs. 2017;77(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  135. Younus J, Verma S, Franek J, Coakley N. Sunitinib malate for gastrointestinal stromal tumour in imatinib mesylate–resistant patients: recommendations and evidence. Curr Oncol. 2010;17(4):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-Oncology. 2016;18(8):1146–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014;9(3):e90353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Pinter T, Klippel Z, Cesas A, Croitoru A, Decaestecker J, Gibbs P, et al. A phase III, randomized, double-blind, placebo-controlled trial of pegfilgrastim in patients receiving first-line FOLFOX/bevacizumab or FOLFIRI/bevacizumab for locally advanced or metastatic colorectal cancer: final results of the pegfilgrastim and anti-VEGF evaluation study (PAVES). Clin Colorectal Cancer. 2017;16(2):103–14. e3.

    Article  PubMed  Google Scholar 

  139. Zhang Y, Han C, Li J, Zhang L, Wang L, Ye S, et al. Efficacy and safety for Apatinib treatment in advanced gastric cancer: a real world study. Sci Rep. 2017;7(1):13208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Qin S. Phase III study of apatinib in advanced gastric cancer: a randomized, double-blind, placebo-controlled trial. Am Soc Clin Oncol. 2014;32:15:4003–4003.

    Article  Google Scholar 

  141. Kuo T, Cabebe E, Koong A, Norton J, Kunz P, Ford J, et al. An update of a phase I/II study of the VEGF receptor tyrosine kinase inhibitor vatalanib and gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2008;26(15_suppl):15571.

    Article  Google Scholar 

  142. Motzer RJ, Porta C, Vogelzang NJ, Sternberg CN, Szczylik C, Zolnierek J, et al. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(3):286–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Perez-Garcia J, Muñoz-Couselo E, Soberino J, Racca F, Cortes J. Targeting FGFR pathway in breast cancer. Breast. 2018;37:126–33.

    Article  CAS  PubMed  Google Scholar 

  144. Sobhani N, Ianza A, D’Angelo A, Roviello G, Giudici F, Bortul M, et al. Current status of fibroblast growth factor receptor-targeted therapies in breast cancer. Cell. 2018;7(7):76.

    Article  CAS  Google Scholar 

  145. Vergote I, Teneriello M, Powell MA, Miller DS, Garcia AA, Mikheeva ON, et al. A phase II trial of lenvatinib in patients with advanced or recurrent endometrial cancer: angiopoietin-2 as a predictive marker for clinical outcomes. Am Soc Clin Oncol. 2013;31:15:5520–5520.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ratnesh Jain or Prajakta Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahagirdar, D. et al. (2019). Receptors for Targeting Growth Factors for Treatment of Cancers. In: Devarajan, P., Dandekar, P., D'Souza, A. (eds) Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. AAPS Advances in the Pharmaceutical Sciences Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-29168-6_7

Download citation

Publish with us

Policies and ethics