Skip to main content

21st Century Virology: Critical Steps

  • Chapter
  • First Online:
Global Virology III: Virology in the 21st Century
  • 1011 Accesses

Abstract

Modernization and refurbishing virology are rapidly advancing as we embark the third decade of the 21st Century. This is needed so as to deepen the impact of the global public health establishment on disease reduction and improvement in well-being. One of the worst global scenarios has occurred, despite alerts and caveats from scientist, namely, global warming, with severe consequences, which promote lower levels of health, lapses in care, vector spread, and provides complementary alternative evolutionary pathways for disease proliferation and progression.

This chapter approaches the application of equations and computer-related intelligence to the study of biological viruses and summarizes certain theoretical advances in our understanding of energy and order/disorder (entropy), which are essential for advances in virology. This chapter further promotes advances in virology that are essential for fundamental attacks on vial infectious disease, therapy, and vaccines. (Computer as well as biological viruses are mentioned, because of their syzygy of yoked integral understanding.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Respiratory syncytial virus (RSV), West Nile virus (WNV), cytomegalovirus (CMV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), Human T-cell leukemia virus (HTLV).

  2. 2.

    An overlapping code would wreak havoc on such calculations!

References

  1. Kephart JO, Sorkin GB, Arnold WC, Chess DM, Tesauro GJ, White SR. Biologically inspired defenses against computer viruses. 1996;1:985–96. https://www.ijcai.org/Proceedings/95-1/Papers/127.pdf

  2. Spafford EH. Computer viruses as artificial life. Artif Life. 1994;1:249–65. www.scs.carleton.ca/~soma/biosec/readings/spafford-viruses.pdf

    Article  Google Scholar 

  3. Cairns J, Stent GS, Watson JD. In: Watson JD, editor. Phage and the origins of molecular biology. Cold Spring Harbor: Cold Spring Harbor Lab; 1966.

    Google Scholar 

  4. Doerr R, Hallauer C. In: Hallauer C, editor. Handbuch der Virusforchung – erste Halfte. Vienna: Springer; 1938.

    Google Scholar 

  5. Fenner F. In: Gibbs A, editor. Portraits of virology: a history of virology. Basel: Karger; 1988.

    Google Scholar 

  6. Luria SE. General virology. New York: Wiley; 1953.

    Google Scholar 

  7. van Helvoort T. History of virus research in the 20th century: the problem of conceptual continuity. Hist Sci. 1994;32:185–235.

    Article  PubMed  Google Scholar 

  8. van Helvoort T. When did virology start? Am Soc Microbiol News. 1996;62:142–5.

    Google Scholar 

  9. Waterson AP, Wilkinson L. An introduction to the history of virology. Cambridge, MA: Cambridge University Press; 1978.

    Google Scholar 

  10. Emerman M, Malik HS. Paleovirology—modern consequences of ancient viruses. PLoS Biol. 2010;8:e1000301. https://doi.org/10.1371/journal.pbio.1000301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rybicki E. A short history of the discovery of viruses. 2018. https://www.researchgate.net/publication/279758269.

  12. Flaviani F, Schroeder DC, Lebret K, Balestreri C, Highfield A, Schroeder JL, Thorpe SE, Moore K, Pasckiewicz K, Pfaff MC, Rybicki EP. Distinct oceanic microbiomes from viruses to protists located near the antarctic circumpolar current. Front Microbiol. 2018;9:1474. https://doi.org/10.3389/fmicb.2018.01474.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernandez F, Minagar A, Alekseeva N, Shapshak P. Neuropsychiatric aspects of prion disease. In: Sadock BJ, Sadock VA, Ruiz P, editors. Comprehensive textbook of psychiatry. Philadelphia: Kluwer and Lippincott Publ; 2017. p. 601–18.

    Google Scholar 

  14. Shapshak P, Somboonwit C, Kuhn J, Sinnott JT, editors. Global virology I. Identifying and investigating viral diseases. New York: Springer Publ; 2015.

    Google Scholar 

  15. Shapshak P, Levine AJ, Somboonwit C, Foley BT, Singer E, Chiappelli F, Sinnott JT. Global virology II. HIV and NeuroAIDS. New York: Springer Publ; 2017.

    Google Scholar 

  16. Ravindran S. Barbara McClintock and the discovery of jumping genes. Proc Natl Acad Sci USA. 2012;109:20198–9. www.pnas.org/cgi/doi/10.1073/pnas.1219372109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pandita D, Pandita A. Jumping genes- the other half of the human genome and the missing heritability conundrum of human genetic disorders. Br Biotechnol J. 2016;11:1–18. ISSN: 2231–2927. NLM ID: 101616695. https://www.researchgate.net/publication/290210528_Jumping_Genes-The_Other_Half_of_the_Human_Genome_and_the_Missing_Heritability_Conundrum_of_Human_Genetic_Disorders

    Article  Google Scholar 

  18. Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A. 2004;101:4894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6:e1001191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Koonin EV. Taming of the shrewd: novel eukaryotic genes from RNA viruses. BMC Biol. 2010;8:2–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Boeke JD, Stoye JP. Retrotransposons, endogenous retro-viruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor: Cold Spring Harbor Press; 1997. p. 343–435.

    Google Scholar 

  22. Brain virus. https://en.wikipedia.org/wiki/Brain_(computer_virus).

  23. Creeper virus. https://en.wikipedia.org/wiki/Creeper_(program).

  24. Zeidanloo HR, Tabatabaei SF, Amoli PV, Tajpour A. All about malwares (malicious codes). 2010. https://pdfs.semanticscholar.org/a45e/50583a13e04b920f6ba04473612734967aa7.pdf.

  25. Finklea K. Dark Web. Security. Congressional Research Service. 2017. https://fas.org/sgp/crs/misc/R44101.pdf.

  26. Sui D, Caverlee J, Rudesill D. The deep web and the darknet: a look inside the internet’s massive black box. 2017. www.wilsoncenter.org https://www.wilsoncenter.org/sites/default/files/stip_dark_web.pdf.

  27. MCB 137 Berkeley Virus Population Dynamics. 2016. https://mcb.berkeley.edu/courses/mcb137/exercises/Virus_Dynamics.pdf.

  28. Balaji S, Akash R, Krittika N, Shapshak P. Sequence accuracy in primary databases: a case study on HIV-1B. In: Shapshak P, Levine AJ, Somboonwit C, Foley BT, Singer E, Chiappelli F, Sinnott JT, editors. Global virology II. HIV and NeuroAIDS. New York: Springer Publ; 2017.

    Google Scholar 

  29. Nagasaki M, Saito A, Doi A, Matsuno H, Miyano S. Foundations of systems biology using Cell Illustrator and pathway databases. New York: Springer Publ; 2009. Chapter 2 Pathway databases. p. 5–18.

    Google Scholar 

  30. Virus structure database. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1347395/bin/nar_34_suppl-1_D386__index.html.

  31. Kazic T. Semiotes: a semantics for sharing. Bioinformatics. 2000;16(12):1129–44. https://doi.org/10.1093/bioinformatics/16.12.1129.

    Article  CAS  PubMed  Google Scholar 

  32. Adamek J, Rosicky J, Vitale EM. Algebraic theories. Cambridge Tracts in Mathematics 184. Cambridge, UK: Cambridge University Press; 2011. isbn: 978-0-521-11922-1

    Google Scholar 

  33. Schultz P, Spivak DI, Vasilakopoulou V, Wisnesky R. Algebraic databases. 2016. https://categoricaldata.net/fql/jfpslides.pdf.

  34. Abiteboul S, Hull R, Vianu V. Foundations of databases. Reading: Addison-Wesley; 1995. isbn: 0-201-53771-0

    Google Scholar 

  35. Adamek J, Rosicky J. Locally presentable and accessible categories. London Mathematical Society Lecture Note Series 189. Cambridge: Cambridge University Press; 1994. isbn: 0-521-42261-2

    Book  Google Scholar 

  36. von Neumann J, Burks AW. Theory of Self-reproducing automata. Urbana, IL: University of Illinois Press; 1996.

    Google Scholar 

  37. Burgin M. Unified foundations for mathematics. Mathematics LO/0403186. 2004. 1–39. p.arXiv:math/0403186v1.

    Google Scholar 

  38. Pesavento U. An implementation of von Neumann’s self-reproducing machine. Artif Life. 1995;2:337–54.

    Article  CAS  PubMed  Google Scholar 

  39. Berrar D, Sato N, Schuster A. Quo Vadis, Artificial Intelligence? Adv Artif Intell. 2010;2010:629869, 12. https://doi.org/10.1155/2010/629869.

    Article  Google Scholar 

  40. Girimonte D, Izzo D. Artificial intelligence for space applications. In: Schuster A, editor. Intelligent computing everywhere. London: Springer; 2007. p. 235–43.

    Chapter  Google Scholar 

  41. Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011;332:680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Popovic M. Researchers in an entropy wonderland: a review of the entropy concept. 2017. https://arxiv.org/pdf/1711.07326

  43. Salamon P, Andresen B, Nulton J, and Konopka AK. The mathematical structure of thermodynamics. 1996. http://www.sci.sdsu.edu/~salamon/MathThermoStates.pdf

    Google Scholar 

  44. Tribus M, McIrving EC. Energy and information. Sci Am. 1971;225:179–88.

    Article  Google Scholar 

  45. Clausius R. The mechanical theory of heat. London: John van Voorst; 1879. https://www3.nd.edu/~powers/ame.20231/clausius1879.pdf

    Google Scholar 

  46. Schrodinger E. What is life? The physical aspect of the living cell. Cambridge: Cambridge University press, X printing; 2003.

    Google Scholar 

  47. Boltzmann L. The second law of thermodynamics (Theoretical physics and philosophical problems). New York: Springer-Verlag New York, LLC; 1974. ISBN 978-90-277-0250-0

    Book  Google Scholar 

  48. Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.

    Article  Google Scholar 

  49. Prigogine I, Wiame JM. Irreversible thermodynamics. Experientia. 1946;2:451–3.

    Article  CAS  PubMed  Google Scholar 

  50. Choi WM, Jung S, Jo YH, Lee S, Lee BJ. Design of new face-centered cubic high entropy alloys by thermodynamic calculation. Met Mater Int. 2017;23:839–47. https://doi.org/10.1007/s12540-017-6701-1.

    Article  CAS  Google Scholar 

  51. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.

    Article  CAS  Google Scholar 

  52. Tolman RC. Relativity, thermodynamics, and cosmology. New York: Dover Publ., Inc.; 1987.

    Google Scholar 

  53. Santra SB. Thermodynamics and statistical mechanics, A brief overview. 2014. http://www.iitg.ac.in/santra/course_files/ph443/thstm.pdf

    Google Scholar 

  54. Pan K, Deem MW. Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza. J R Soc Interface. 2011;8:1644–53. https://doi.org/10.1098/rsif.2011.0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shapshak P, Chiappelli F, Somboonwit C, Sinnott JT. The influenza pandemic of 2009: Lessons and implications. Mol Diag Ther. 2011;15:63–81.

    Article  Google Scholar 

  56. Hoyle L, Davies SP. Amino ad composition of the protein components of influenza virus A. Virol. 1961;13:53–7.

    Article  CAS  Google Scholar 

  57. Ward CW, Dopheide TA. Amino acid sequence and oligosaccharide distribution of the HA from an early Hong Kong influenza virus variant A/Aichi/2/68(X-31). Biochem J. 1981;193:953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duncan RC, Knapp RG, Miller MC III. Introductory biostatistics for the health sciences. Albany: Delmar Publ. Inc.; 1983.

    Google Scholar 

  59. Rosner B. Fundamental of biostatistics. Pacific Grove: Duxbury Publ. Inc; 2000.

    Google Scholar 

  60. Reza FM. Information theory. New York: Dover Publ; 1994.

    Google Scholar 

  61. Holden T, Cheung E, Dehipawala S, Ye J, Tremberger G Jr, Lieberman D, Cheung T. Gene entropy-fractal dimension informatics with application to mouse-human translational medicine. BioMed Res Intern. 2013;2013:7. ID 582358. https://doi.org/10.1155/2013/582358

    Article  CAS  Google Scholar 

  62. Zmeskal O, Dzik P, Vesely M. Entropy of fractal systems. Comput Math Appl. 2013;66:135–46.

    Article  Google Scholar 

  63. Holden T, Tremberger G, Cheung B, Subramanian R, Sullivan R, Gadura N, Schneider P, Marchese P, Flamholz A, Cheung T, Lieberman D. Fractal analysis of 16S rRNA gene sequences in archaea thermophiles. World Acad Sci Eng Technol Int J Bioeng Life Sci. 2008;2:192–6.

    Google Scholar 

  64. Tremberger G Jr, Dehipawala S, Cheung E, Yao H, Gadura N, Schneider P, Lieberman D, Holden T, Cheung T. Fractal analysis of FOXP2 regulated accelerated conserved non-coding sequences in human fetal brain. World Acad Sci Eng Techn. 2012;67:881–6.

    Google Scholar 

  65. Higuchi T. Approach to an irregular time series on the basis of fractal theory. Physica D. 1988;31:277–83. Kolmogorov AN, Zur Deutung der Intuitionistischen Logik. Math; 35: 57–65. 1932

    Article  Google Scholar 

  66. Riyazuddin M. Information analysis of DNA. 2005. https://arxiv.org/pdf/1010.4205

    Google Scholar 

  67. Kolmogorov AN. Zur Deutung der Intuitionistischen Logik. Math Z. 1932;35:57–65.

    Google Scholar 

  68. Kolmogorov AN. Three approaches to the quantitative definition of information. Probl Inf Transm. 1965;1:1–7.

    Google Scholar 

  69. Kolmogorov AN. Complexity of algorithms and objective definition of randomness. Uspekhi Mat Nauk. 1974;29:155. Moscow Math Soc meeting 4/16/1974

    Google Scholar 

  70. Kolmogorov AN. Combinatorial foundations of information theory and the calculus of probabilities. Russ Math Surv. 1983;38:29–40.

    Article  Google Scholar 

  71. Shen A, Vereshchagin N. Logical operations and Kolmogorov complexity. Theor Comp Sci. 2002;271:125–9.

    Article  Google Scholar 

  72. Terwijn SA, Torenvliet L, Vitnyi PMB. Nonapproximability of the normalized information distance. J Comp System Sci. 2013;77:738–42.

    Article  Google Scholar 

  73. Brouwer LEJ. Begrundung der Mengenlehre unabh angig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre, vol. 5. Kon Ned Ak Wet Verhandelingen; 1918. p. 1–43.

    Google Scholar 

  74. van Dalen D. Intuitionistic logic. In: Gobble L, editor. The blackwell guide to philosophica logic. Oxford: Blackwell; 2001. p. 224–57.

    Google Scholar 

  75. Kleene SC. Realizability: a retrospective survey. In: Mathias ARD, Rogers H, editors. Cambridge Summer School in Mathematical Logic, volume 337, of Lecture Notes in Mathematics. Cambridge, UK: Springer-Verlag; 1973. p. 95–112.

    Chapter  Google Scholar 

  76. van Oosten J. Axiomatizing higher-order Kleene realizability. Ann Pure Appl Logic. 1994;70:87–111.

    Article  Google Scholar 

  77. van Oosten J. Extensional realizability. Ann Pure Appl Logic. 1997;84:317–49.

    Article  Google Scholar 

  78. Grunwald P, Vitanyi P. Shannon information and Kolmogorov complexity. arXiv:cs/0410002v1 [cs.IT] 2004.

    Google Scholar 

  79. Gray RM. Entropy and information theory. Stanford, CA, Publ. 2013. https://ee.stanford.edu/~gray/it.html

  80. Schuster AJ. In: Schuster AJ, editor. Intelligent computing everywhere. London: Springer Publ; 2007.

    Chapter  Google Scholar 

Download references

Acknowledgements

Conversations with Dr. G. Baumslag (Institute for Advanced Study, Princeton, NJ), Dr. C. Smith (Princeton University, Princeton, NJ), and A. Pellionisz (Mountainview, CA) are acknowledged.

Conflicts of Interest

The author reports no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Shapshak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shapshak, P. (2019). 21st Century Virology: Critical Steps. In: Shapshak, P., et al. Global Virology III: Virology in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-29022-1_22

Download citation

Publish with us

Policies and ethics