Skip to main content

Stem Cell Therapy in Wound Care

  • Chapter
  • First Online:
Local Wound Care for Dermatologists

Part of the book series: Updates in Clinical Dermatology ((UCD))

  • 796 Accesses

Abstract

Stem cell therapy has become an attractive new approach in wound care due to the limited effectiveness of traditional treatment methods. This is especially true in chronic wounds, where healing takes much longer times than acute wounds due to impairments in the various healing stages. However, challenges remain in the application of stem cell therapy due to different concerns such as cell viability, differentiation, immune rejection, or risks of tumor growth. New sources of stem cells are being researched, and different methods of delivery are being developed in order to improve stem cell delivery and enhance wound healing and skin regeneration. This chapter aims to discuss some of the advancements in stem cell therapy in the context of skin wound repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Control CfD, Prevention. National diabetes statistics report, 2017. Atlanta, GA: Centers for Disease Control and Prevention; 2017.

    Google Scholar 

  2. Hosgood G. Stages of wound healing and their clinical relevance. Vet Clin North Am Small Anim Pract. 2006;36(4):667–85.

    Article  PubMed  Google Scholar 

  3. Janis J, Attinger C. The basic science of wound healing. Plast Reconstr Surg. 2006;117(7 Suppl):12S–34S.

    PubMed  Google Scholar 

  4. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.

    Article  PubMed  Google Scholar 

  5. Greenhalgh DG, Sprugel KH, Murray MJ, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol. 1990;136(6):1235.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kao H-K, Chen B, Murphy GF, Li Q, Orgill DP, Guo L. Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis. Ann Surg. 2011;254(6):1066–74.

    Article  PubMed  Google Scholar 

  7. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grinnell F. Fibronectin and wound healing. J Cell Biochem. 1984;26(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  9. Supuran CT, Scozzafava A. Matrix metalloproteinases (MMPs). London\New York: Taylor & Francis; 2002.

    Google Scholar 

  10. Salo T, Mäkelä M, Kylmäniemi M, Autio-Harmainen H, Larjava H. Expression of matrix metalloproteinase-2 and-9 during early human wound healing. Lab Invest. 1994;70(2):176–82.

    CAS  PubMed  Google Scholar 

  11. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9(1):283–9.

    Article  CAS  PubMed  Google Scholar 

  12. Amento EP, Beck LS. TGFb and wound healing. Clin Appl TGFb. 2008;157:115–29.

    Google Scholar 

  13. Rubin JS, Bottaro DP, Chedid M, Miki T, Ron D, Cheon HG, et al. Keratinocyte growth factor. Cell Biol Int. 1995;19(5):399–411.

    Article  CAS  PubMed  Google Scholar 

  14. Carpenter G, Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48(1):193–216.

    Article  CAS  PubMed  Google Scholar 

  15. Nissen NN, Polverini P, Koch AE, Volin MV, Gamelli RL, DiPietro LA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152(6):1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.

    Article  CAS  PubMed  Google Scholar 

  17. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349.

    Article  CAS  PubMed  Google Scholar 

  18. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002;124(2):214–22.

    Article  PubMed  Google Scholar 

  19. Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176(2):26S–38S.

    Article  CAS  PubMed  Google Scholar 

  20. Harding K, Morris H, Patel G. Healing chronic wounds. BMJ. 2002;324(7330):160–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen A, Andersen CB, Givskov M, et al. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen. 2011;19(3):387–91.

    Article  PubMed  Google Scholar 

  22. Nyanhongo GS, Sygmund C, Ludwig R, Prasetyo EN, Guebitz GM. An antioxidant regenerating system for continuous quenching of free radicals in chronic wounds. Eur J Pharm Biopharm. 2013;83(3):396–404.

    Article  CAS  PubMed  Google Scholar 

  23. James GA, Swogger E, Wolcott R, deLancey Pulcini E, Secor P, Sestrich J, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37–44.

    Article  PubMed  Google Scholar 

  24. Mustoe T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg. 2004;187(5):S65–70.

    Article  CAS  Google Scholar 

  25. Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  26. Loots MA, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Investig Dermatol. 1998;111(5):850–7.

    Article  CAS  PubMed  Google Scholar 

  27. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol. 2007;127(3):514–25.

    Article  CAS  PubMed  Google Scholar 

  28. Snyder RJ, Hanft JR. Diabetic foot ulcers—effects on quality of life, costs, and mortality and the role of standard wound care and advanced-care therapies in healing: a review. Ostomy Wound Manage. 2009;55(11):28.

    PubMed  Google Scholar 

  29. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923.

    Article  CAS  PubMed  Google Scholar 

  30. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46.

    Article  CAS  PubMed  Google Scholar 

  31. Boyce ST, Kagan RJ, Meyer NA, Yakuboff KP, Warden GD. The 1999 clinical research award cultured skin substitutes combined with integra artificial skin to replace native skin autograft and allograft for the closure of excised full–thickness burns: Oxford University Press. 1999;20(9):453–61.

    Google Scholar 

  32. Hunt JA, Moisidis E, Haertsch P. Initial experience of Integra in the treatment of post-burn anterior cervical neck contracture. Br J Plast Surg. 2000;53(8):652–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zhong S, Zhang Y, Lim C. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(5):510–25.

    Article  CAS  PubMed  Google Scholar 

  34. Signorini M, Clementoni MT. Clinical evaluation of a new self-drying silicone gel in the treatment of scars: a preliminary report. Aesthet Plast Surg. 2007;31(2):183–7.

    Article  Google Scholar 

  35. Karagoz H, Yuksel F, Ulkur E, Evinc R. Comparison of efficacy of silicone gel, silicone gel sheeting, and topical onion extract including heparin and allantoin for the treatment of postburn hypertrophic scars. Burns. 2009;35(8):1097–103.

    Article  PubMed  Google Scholar 

  36. Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm. 2011;8(5):1471–9.

    Article  CAS  PubMed  Google Scholar 

  37. Laverdet B, Micallef L, Lebreton C, Mollard J, Lataillade JJ, Coulomb B, et al. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. Pathol Biol. 2014;62(2):108–17.

    Article  CAS  PubMed  Google Scholar 

  38. Strong AL, Neumeister MW, Levi B. Stem cells and tissue engineering: regeneration of the skin and its contents. Clin Plast Surg. 2017;44(3):635–50.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  40. Watt FM. Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans t R Soc Lond B Biol Sci. 1998;353(1370):831–7.

    Article  CAS  Google Scholar 

  41. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  42. Menasche P, Vanneaux V, Fabreguettes JR, Bel A, Tosca L, Garcia S, et al. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J. 2015;36(12):743–50.

    Article  CAS  PubMed  Google Scholar 

  43. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.

    Article  CAS  PubMed  Google Scholar 

  44. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A. 2004;101(34):12543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parish CL, Arenas E. Stem-cell-based strategies for the treatment of Parkinson’s disease. Neurodegener Dis. 2007;4(4):339–47.

    Article  PubMed  Google Scholar 

  46. Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu S-J, et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  47. Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 2010;28(4):589–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.

    Article  CAS  PubMed  Google Scholar 

  49. Ohlstein B, Kai T, Decotto E, Spradling A. The stem cell niche: theme and variations. Curr Opin Cell Biol. 2004;16(6):693–9.

    Article  CAS  PubMed  Google Scholar 

  50. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  51. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59.

    Article  CAS  PubMed  Google Scholar 

  52. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    Article  CAS  PubMed  Google Scholar 

  53. Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow–derived cells. Arch Dermatol. 2003;139(4):510–6.

    Article  PubMed  Google Scholar 

  54. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36.

    Article  PubMed  Google Scholar 

  55. Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H, et al. Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis. 2013;4(6):e685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gugerell A, Kober J, Schmid M, Nickl S, Kamolz L, Keck M. Botulinum toxin A and lidocaine have an impact on adipose-derived stem cells, fibroblasts, and mature adipocytes in vitro. J Plast Reconstr Aesthet Surg. 2014;67(9):1276–81.

    Article  CAS  PubMed  Google Scholar 

  57. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21(14):2724–52.

    Article  CAS  PubMed  Google Scholar 

  59. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012;76(7):1750–60.

    Article  CAS  PubMed  Google Scholar 

  60. Pelizzo G, Avanzini MA, Cornaglia AI, Osti M, Romano P, Avolio L, et al. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med. 2015;13(1):219.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Uysal CA, Tobita M, Hyakusoku H, Mizuno H. The effect of bone-marrow-derived stem cells and adipose-derived stem cells on wound contraction and epithelization. Adv Wound Care. 2014;3(6):405–13.

    Article  Google Scholar 

  62. Mendez JJ, Ghaedi M, Sivarapatna A, Dimitrievska S, Shao Z, Osuji CO, et al. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials. 2015;40:61–71.

    Article  CAS  PubMed  Google Scholar 

  63. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330–7.

    Article  PubMed  Google Scholar 

  64. Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011;20(5):655–67.

    Article  PubMed  Google Scholar 

  65. Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9.

    Article  PubMed  Google Scholar 

  66. Troyer DL, Weiss ML. Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26(3):591–9.

    Article  PubMed  Google Scholar 

  67. Luo G, Cheng W, He W, Wang X, Tan J, Fitzgerald M, et al. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen. 2010;18(5):506–13.

    Article  PubMed  Google Scholar 

  68. Sabapathy V, Sundaram B, Sreelakshmi V, Mankuzhy P, Kumar S. Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One. 2014;9(4):e93726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi S, Jia S, Liu J, Chen G. Accelerated regeneration of skin injury by co-transplantation of mesenchymal stem cells from Wharton’s jelly of the human umbilical cord mixed with microparticles. Cell Biochem Biophys. 2015;71(2):951–6.

    Article  CAS  PubMed  Google Scholar 

  70. Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MDF, et al. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells. 2008;26(1):146–50.

    Article  CAS  PubMed  Google Scholar 

  71. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell. 1995;80(1):83–93.

    Article  CAS  PubMed  Google Scholar 

  72. Fuchs E, Nowak J, editors. Building epithelial tissues from skin stem cells. Cold Spring Harbor symposia on quantitative biology: Cold Spring Harbor Laboratory Press. 2008;73:333–50.

    Google Scholar 

  73. Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development. 1999;126(11):2409–18.

    CAS  PubMed  Google Scholar 

  74. Waters JM, Richardson GD, Jahoda CA, editors. Hair follicle stem cells. Seminars in cell & developmental biology: Elsevier. 2007;18(2):245–54.

    Google Scholar 

  75. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303(5656):359–63.

    Article  CAS  PubMed  Google Scholar 

  76. Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33(4):405–13.

    Article  PubMed  Google Scholar 

  77. Oshima H, Inoue H, Matsuzaki K, Tanabe M, Kumagai N. Permanent restoration of human skin treated with cultured epithelium grafting-wound healing by stem cell based tissue engineering. Hum Cell. 2002;15(3):118–28.

    Article  PubMed  Google Scholar 

  78. Shen Y, Dai L, Li X, Liang R, Guan G, Zhang Z, et al. Epidermal stem cells cultured on collagen-modified chitin membrane induce in situ tissue regeneration of full-thickness skin defects in mice. PLoS One. 2014;9(2):e87557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lough DM, Yang M, Blum A, Reichensperger JD, Cosenza NM, Wetter N, et al. Transplantation of the LGR6+ epithelial stem cell into full-thickness cutaneous wounds results in enhanced healing, nascent hair follicle development, and augmentation of angiogenic analytes. Plast Reconstr Surg. 2014;133(3):579–90.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang G, Hu Q, Braunlin EA, Suggs LJ, Zhang J. Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng Part A. 2008;14(6):1025–36.

    Article  CAS  PubMed  Google Scholar 

  81. Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 2014;3(9):1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zimmerlin L, Rubin JP, Pfeifer ME, Moore LR, Donnenberg VS, Donnenberg AD. Human adipose stromal vascular cell delivery in a fibrin spray. Cytotherapy. 2013;15(1):102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow–derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13(6):1299–312.

    Article  CAS  PubMed  Google Scholar 

  84. Kaminski A, Klopsch C, Mark P, Yerebakan C, Donndorf P, Gäbel R, et al. Autologous valve replacement—CD133+ stem cell-plus-fibrin composite-based sprayed cell seeding for intraoperative heart valve tissue engineering. Tissue Eng Part C Methods. 2010;17(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  85. Wu X, Wang G, Tang C, Zhang D, Li Z, Du D, et al. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent. J Biomed Mater Res A. 2011;98(3):442–9.

    Article  CAS  PubMed  Google Scholar 

  86. Shakespeare PG. The role of skin substitutes in the treatment of burn injuries. Clin Dermatol. 2005;23(4):413–8.

    Article  PubMed  Google Scholar 

  87. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–12.

    Article  PubMed  Google Scholar 

  88. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93.

    Article  CAS  PubMed  Google Scholar 

  89. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109(7):1855–63.

    Article  CAS  PubMed  Google Scholar 

  91. Cubo N, Garcia M, del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9(1):015006.

    Article  CAS  PubMed  Google Scholar 

  92. Liu W, Zhang YS, Heinrich MA, De Ferrari F, Jang HL, Bakht SM, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater. 2017;29(3):1604630.

    Article  CAS  Google Scholar 

  93. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, et al. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv Mater. 2016;28(4):677–84.

    Article  CAS  PubMed  Google Scholar 

  95. Hakimi N, Cheng R, Leng L, Sotoudehfar M, Ba PQ, Bakhtyar N, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab Chip. 2018;18(10):1440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci. 1994;91(21):9857–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105.

    Article  CAS  PubMed  Google Scholar 

  98. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Amini-Nik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aljghami, M.E., Amini-Nik, S. (2020). Stem Cell Therapy in Wound Care. In: Alavi, A., Maibach, H. (eds) Local Wound Care for Dermatologists. Updates in Clinical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28872-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28872-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28871-6

  • Online ISBN: 978-3-030-28872-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics