Skip to main content

Neonatal Hypotonia

  • Chapter
  • First Online:
Emerging Topics and Controversies in Neonatology
  • 900 Accesses

Abstract

Neonatal hypotonia is a key clinical presentation in neonatal medicine. Identifying an underlying diagnosis can be a challenge because of a wide differential diagnosis. However, a systematic approach—taking a history, performing both a general and neurological examination—can point the way to the correct diagnosis or at least to the investigations that are required.

This chapter will focus in on those disorders that present in the neonatal period. The classification of underlying causes will be presented in relation to the anatomical location of the deficit. Summaries of the more common conditions will be given including mechanisms of inheritance. This partly reflects the increasing role of genetics in diagnosis of the floppy infant and neurological disorders in general. Brief case presentations will be used to illustrate the relationship between clinical findings and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sparks SE. Neonatal hypotonia. Clin Perinatol. 2015;42(2):71, ix.

    Article  Google Scholar 

  2. Birdi K, Prasad AN, Prasad C, Chodirker B, Chudley AE. The floppy infant: retrospective analysis of clinical experience (1990-2000) in a tertiary care facility. J Child Neurol. 2005;20(10):803–8.

    Article  PubMed  Google Scholar 

  3. Hartley L, Ranjan R. Evaluation of the floppy infant. Paediatr Child Health. 2015;25(11):498–504.

    Article  Google Scholar 

  4. Leyenaar J, Camfield P, Camfield C. A schematic approach to hypotonia in infancy. Paediatr Child Health. 2005;10(7):397–400.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chan K-K, Darras BT. Neonatal hypotonia. In: Perlman JM, editor. Neurology. 2nd ed. Philadelphia: Elsevier; 2008. p. 172–94.

    Google Scholar 

  6. Wattendorf DJ, Muenke M. Prader-Willi syndrome. Am Fam Physician. 2005;72(5):827–30.

    PubMed  Google Scholar 

  7. Dubowitz LM, Dubowitz V, Mercuri E. The neurological assessment of the preterm and full-term newborn infant. 2nd ed. London: Mac Keith Press; 1999.

    Google Scholar 

  8. Dubowitz L, Ricciw D, Mercuri E. The Dubowitz neurological examination of the full-term newborn. Ment Retard Dev Disabil Res Rev. 2005;11(1):52–60.

    Article  PubMed  Google Scholar 

  9. Wusthoff CJ. How to use: the neonatal neurological examination. Arch Dis Child Educ Pract Ed. 2013;98(4):148–53.

    Article  PubMed  Google Scholar 

  10. Harris SR. Congenital hypotonia: clinical and developmental assessment. Dev Med Child Neurol. 2008;50(12):889–92.

    Article  PubMed  Google Scholar 

  11. Yazowitz E, Delfiner L, Moshé SL. Neonatal hypotonia. NeoReviews. 2018;19(8):e455.

    Google Scholar 

  12. Richer LP, Shevell MI, Miller SP. Diagnostic profile of neonatal hypotonia: an 11-year study. Pediatr Neurol. 2001;25(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ankala A, Hegde MR. Gamut of genetic testing for neonatal care. Clin Perinatol. 2015;42(2):26, vii.

    Article  Google Scholar 

  14. Lalani SR. Current genetic testing tools in neonatal medicine. Pediatr Neonatol. 2017;58(2):111–21.

    Article  PubMed  Google Scholar 

  15. Mercuri E, Muntoni F. The neonate with a neuromuscular disorder. In: Rutherford MA, editor. MRI of the neonatal brain. London: W.B. Saunders; 2002.

    Google Scholar 

  16. Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain. 2012;135(Pt 5):1348–69.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kang PB. Pediatric nerve conduction studies and EMG. In: Blum AS, Rutkove SB, editors. The clinical neurophysiology primer. Totowa: Humana Press; 2007. p. 369–89.

    Chapter  Google Scholar 

  18. Ahmed MI, Iqbal M, Hussain N. A structured approach to the assessment of a floppy neonate. J Pediatr Neurosci. 2016;11(1):2–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Natarajan N, Ionita C. Neonatal neuromuscular disorders. In: Gleason CA, Juul SE, editors. Avery’s diseases of the newborn. 10th ed. New York: Elsevier Health Sciences; 2017. p. 952–60.

    Google Scholar 

  20. Amato M, Nagel R, Huppi P. Creatine-kinase MM in the perinatal period. Klin Padiatr. 1991;203(5):389–94.

    Article  CAS  PubMed  Google Scholar 

  21. Darras BT, Kang PB. Clinical trials in spinal muscular atrophy. Curr Opin Pediatr. 2007;19(6):675–9.

    Article  PubMed  Google Scholar 

  22. Wan L, Dreyfuss G. Splicing-correcting therapy for SMA. Cell. 2017;170(1):5.

    Article  CAS  PubMed  Google Scholar 

  23. Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech. 2017;1860(3):299–315.

    Article  CAS  PubMed  Google Scholar 

  24. D’Amico A, Mercuri E, Tiziano FD, Bertini E. Spinal muscular atrophy. Orphanet J Rare Dis. 2011;6:71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Al Dakhoul S. Very severe spinal muscular atrophy (type 0). Avicenna J Med. 2017;7(1):32–3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther. 2017;24(9):520–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet. 2002;70(2):358–68.

    Article  CAS  PubMed  Google Scholar 

  28. Butchbach ME. Copy number variations in the survival motor neuron genes: implications for spinal muscular atrophy and other neurodegenerative diseases. Front Mol Biosci. 2016;3:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–32.

    Article  CAS  PubMed  Google Scholar 

  30. Gidaro T, Servais L. Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps. Dev Med Child Neurol. 2019;61(1):19–24.

    Article  PubMed  Google Scholar 

  31. Neil EE, Bisaccia EK. Nusinersen: a novel antisense oligonucleotide for the treatment of spinal muscular atrophy. J Pediatr Pharmacol Ther. 2019;24(3):194–203.

    PubMed  PubMed Central  Google Scholar 

  32. Burgart AM, Magnus D, Tabor HK, Paquette ED, Frader J, Glover JJ, et al. Ethical challenges confronted when providing Nusinersen treatment for spinal muscular atrophy. JAMA Pediatr. 2018;172(2):188–92.

    Article  PubMed  Google Scholar 

  33. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22.

    Article  CAS  PubMed  Google Scholar 

  34. Darras BT, Volpe JJ. Muscle involvement and restricted disorders. In: Volpe JJ, editor. Volpe's neurology of the newborn. 6th ed. Philadelphia: Elsevier; 2018. p. 922–70.

    Chapter  Google Scholar 

  35. Turner C, Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry. 2010;81(4):358–67.

    Article  PubMed  Google Scholar 

  36. Ho G, Cardamone M, Farrar M. Congenital and childhood myotonic dystrophy: current aspects of disease and future directions. World J Clin Pediatr. 2015;4(4):66–80.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mills KR. The basics of electromyography. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 2):5.

    Google Scholar 

  38. Rutherford MA, Heckmatt JZ, Dubowitz V. Congenital myotonic dystrophy: respiratory function at birth determines survival. Arch Dis Child. 1989;64(2):191–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Campbell C, Sherlock R, Jacob P, Blayney M. Congenital myotonic dystrophy: assisted ventilation duration and outcome. Pediatrics. 2004;113(4):811–6.

    Article  PubMed  Google Scholar 

  40. Ho G, Carey KA, Cardamone M, Farrar MA. Myotonic dystrophy type 1: clinical manifestations in children and adolescents. Arch Dis Child. 2019;104(1):48–52.

    Article  PubMed  Google Scholar 

  41. Cassidy SB, Driscoll DJ. Prader-Willi syndrome. Eur J Hum Genet. 2009;17(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  42. Singh P, Mahmoud R, Gold J, Tamura RN, Miller JL, Butler MG, et al. Perinatal complications associated with Prader-Willi syndrome (PWS)—comparison to the general population and among the different genetic subtypes. Pediatrics. 2018;142(1 MeetingAbstract):230A.

    Google Scholar 

  43. Whittington JE, Holland AJ, Webb T, Butler J, Clarke D, Boer H. Population prevalence and estimated birth incidence and mortality rate for people with Prader-Willi syndrome in one UK Health Region. J Med Genet. 2001;38(11):792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tuysuz B, Kartal N, Erener-Ercan T, Guclu-Geyik F, Vural M, Perk Y, et al. Prevalence of Prader-Willi syndrome among infants with hypotonia. J Pediatr. 2014;164(5):1064–7.

    Article  PubMed  Google Scholar 

  45. Smith A, Hung D. The dilemma of diagnostic testing for Prader-Willi syndrome. Transl Pediatr. 2017;6(1):46–56.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mallik A, Weir AI. Nerve conduction studies: essentials and pitfalls in practice. J Neurol Neurosurg Psychiatry. 2005;76(Suppl 2):31.

    Google Scholar 

  47. Ouvrier RA, McLeod JG, Conchin TE. The hypertrophic forms of hereditary motor and sensory neuropathy. A study of hypertrophic Charcot-Marie-Tooth disease (HMSN type I) and Dejerine-Sottas disease (HMSN type III) in childhood. Brain. 1987;110(Pt 1):121–48.

    Article  PubMed  Google Scholar 

  48. Wilmshurst JM, Pollard JD, Nicholson G, Antony J, Ouvrier R. Peripheral neuropathies of infancy. Dev Med Child Neurol. 2003;45(6):408–14.

    Article  PubMed  Google Scholar 

  49. Yiu EM, Ryan MM. Genetic axonal neuropathies and neuronopathies of pre-natal and infantile onset. J Peripher Nerv Syst. 2012;17(3):285–300.

    Article  PubMed  Google Scholar 

  50. Darras BT, Volpe JJ. Levels above lower motor neurone to neuromuscular junction. In: Volpe J, editor. Volpe’s neurology of the newborn. 6th ed. Philadelphia: Elsevier. p. 887–921.

    Google Scholar 

  51. Choi HW, Kuntz NL. Peripheral nerve disorders in the neonate. NeoReviews. 2016;17(12):e728.

    Article  Google Scholar 

  52. Jovandaric MZ, Despotovic DJ, Jesic MM, Jesic MD. Neonatal outcome in pregnancies with autoimmune myasthenia gravis. Fetal Pediatr Pathol. 2016;35(3):167–72.

    Article  CAS  PubMed  Google Scholar 

  53. Parr JR, Andrew MJ, Finnis M, Beeson D, Vincent A, Jayawant S. How common is childhood myasthenia? The UK incidence and prevalence of autoimmune and congenital myasthenia. Arch Dis Child. 2014;99(6):539–42.

    Article  PubMed  Google Scholar 

  54. Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14(4):420–34.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rodriguez Cruz PM, Palace J, Beeson D. The neuromuscular junction and wide heterogeneity of congenital myasthenic syndromes. Int J Mol Sci. 2018;19(6). https://doi.org/10.3390/ijms19061677.

    Article  CAS  PubMed Central  Google Scholar 

  56. Khan A, Hussain N, Gosalakkal JA. Bulbar dysfunction: an early presentation of congenital myasthenic syndrome in three infants. J Pediatr Neurosci. 2011;6(2):124–6.

    PubMed  PubMed Central  Google Scholar 

  57. Smith JK, Burns S, Cunningham S, Freeman J, McLellan A, McWilliam K. The hazards of honey: infantile botulism. BMJ Case Rep. 2010;2010. https://doi.org/10.1136/bcr.05.2010.3038.

    Google Scholar 

  58. Abdulla CO, Ayubi A, Zulfiquer F, Santhanam G, Ahmed MA, Deeb J. Infant botulism following honey ingestion. BMJ Case Rep. 2012;2012. https://doi.org/10.1136/bcr.11.2011.5153.

    Google Scholar 

  59. Norwood FL, Harling C, Chinnery PF, Eagle M, Bushby K, Straub V. Prevalence of genetic muscle disease in northern England: in-depth analysis of a muscle clinic population. Brain. 2009;132(Pt 11):3175–86.

    Article  PubMed  Google Scholar 

  60. Falsaperla R, Pratico AD, Ruggieri M, Parano E, Rizzo R, Corsello G, et al. Congenital muscular dystrophy: from muscle to brain. Ital J Pediatr. 2016;42(1):9.

    Article  CAS  Google Scholar 

  61. Bonnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord. 2014;24(4):289–311.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fu XN, Xiong H. Genetic and clinical advances of congenital muscular dystrophy. Chin Med J. 2017;130(21):2624–31.

    Article  PubMed  PubMed Central  Google Scholar 

  63. North KN. Clinical approach to the diagnosis of congenital myopathies. Semin Pediatr Neurol. 2011;18(4):216–20.

    Article  PubMed  Google Scholar 

  64. North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24(2):97–116.

    Article  PubMed  Google Scholar 

  65. Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, et al. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr. 2017;43(1):z.

    Google Scholar 

  66. Frazer L, Florence A, Warner D. Why the long face? A case of neonatal hypotonia. Pediatrics. 2018;142(1 Meeting Astract).

    Google Scholar 

  67. Bharucha-Goebel DX, Santi M, Medne L, Zukosky K, Dastgir J, Shieh PB, et al. Severe congenital RYR1-associated myopathy: the expanding clinicopathologic and genetic spectrum. Neurology. 2013;80(17):1584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prasad AN, Prasad C. The floppy infant: contribution of genetic and metabolic disorders. Brain Dev. 2003;25(7):457–76.

    Article  PubMed  Google Scholar 

  69. Uusimaa J, Jungbluth H, Fratter C, Crisponi G, Feng L, Zeviani M, et al. Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet. 2011;48(10):660–8.

    Article  CAS  PubMed  Google Scholar 

  70. Martinez M, Romero MG, Guereta LG, Cabrera M, Regojo RM, Albajara L, et al. Infantile-onset Pompe disease with neonatal debut: a case report and literature review. Medicine (Baltimore). 2017;96(51):e9186.

    Article  Google Scholar 

  71. Klouwer FC, Berendse K, Ferdinandusse S, Wanders RJ, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis. 2015;10:9.

    Article  Google Scholar 

  72. Rais Dana J, Tunnessen WW. Picture of the month. Zellweger (cerebro-hepato-renal) syndrome. Arch Pediatr Adolesc Med. 1999;153(10):1105–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Miralles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miralles, R., Panjwani, D. (2020). Neonatal Hypotonia. In: Boyle, E., Cusack, J. (eds) Emerging Topics and Controversies in Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28829-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28829-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28828-0

  • Online ISBN: 978-3-030-28829-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics