Skip to main content

Ion Channels of the Retinal Pigment Epithelium

  • Chapter
  • First Online:
Retinal Pigment Epithelium in Health and Disease

Abstract

Ion channels contribute to or permit almost every cell function. This importance is highlighted by the definition of the so-called channelopathies as a disease term. These channelopathies are caused by changes of ion channels itself either by mutation of ion channel genes or by changes in the control of ion channel activities. The RPE is a close interaction partner of the photoreceptors and changes of this interaction leads to retinal degeneration. For almost all RPE functions also ion channels are involved so that the analysis of RPE’s ion channels and their contribution to the RPE function does not only help to understand the interaction of the RPE and the photoreceptors but also the mechanisms of disease. This chapter describes the profile of ion channels that are known in the RPE, their contribution to RPE function and their role in retinal degeneration. The profile includes Cl channels such as anoctamin-2, bestrophin-1, CCl-2 or CFTR, K+ channels such as Kir7.1 or KCNQ4/5 and Ca2+ channels such as Cav1.3, TRPC or TRPV2. In particular, the analysis of Cl channels provided basic information on mechanisms of transepithelial transport of Cl and water across the RPE. Furthermore, the analysis of K+ channels shed light onto spatial K+ buffering that maintains the excitability of photoreceptors. Finally, the analysis of ion channels that contribute to intracellular Ca2+ homeostasis helped to decipher new regulatory mechanisms for secretion of growth-factors, phagocytosis of shed photoreceptor outer segments and transepithelial transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bok D. The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl. 1993;17:189–95.

    Article  CAS  PubMed  Google Scholar 

  2. Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med. 2010;10(9):802–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol. 1985;60(4):327–46.

    Article  CAS  PubMed  Google Scholar 

  4. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81.

    Article  CAS  PubMed  Google Scholar 

  5. Reichhart N, Strauss O. Ion channels and transporters of the retinal pigment epithelium. Exp Eye Res. 2014;126:27–37. https://doi.org/10.1016/j.exer.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  6. Wimmers S, Karl MO, Strauss O. Ion channels in the RPE. Prog Retin Eye Res. 2007;26(3):263–301. https://doi.org/10.1016/j.preteyeres.2006.12.002.

    Article  CAS  PubMed  Google Scholar 

  7. Jentsch TJ, Pusch M. CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev. 2018;98(3):1493–590. https://doi.org/10.1152/physrev.00047.2017.

    Article  CAS  PubMed  Google Scholar 

  8. Jurkat-Rott K, Lerche H, Weber Y, Lehmann-Horn F. Hereditary channelopathies in neurology. Adv Exp Med Biol. 2010;686:305–34. https://doi.org/10.1007/978-90-481-9485-8_18.

    Article  PubMed  Google Scholar 

  9. Lehmann-Horn F, Jurkat-Rott K. Voltage-gated ion channels and hereditary disease. Physiol Rev. 1999;79(4):1317–72. https://doi.org/10.1152/physrev.1999.79.4.1317.

    Article  CAS  PubMed  Google Scholar 

  10. Skinner JR, Winbo A, Abrams D, Vohra J, Wilde AA. Channelopathies that lead to sudden cardiac death: clinical and genetic aspects. Heart Lung Circ. 2019;28(1):22–30. https://doi.org/10.1016/j.hlc.2018.09.007.

    Article  PubMed  Google Scholar 

  11. Mehta A. CFTR: more than just a chloride channel. Pediatr Pulmonol. 2005;39(4):292–8. https://doi.org/10.1002/ppul.20147.

    Article  PubMed  Google Scholar 

  12. Mergler S, Drost A, Bechstein WO, Neuhaus P, Wiedenmann B. Ca(2+) channel properties in neuroendocrine tumor cell cultures investigated by whole-cell patch-clamp technique. Ann N Y Acad Sci. 2004;1014:137–9.

    Article  CAS  PubMed  Google Scholar 

  13. De Marchi E, Orioli E, Dal Ben D, Adinolfi E. P2X7 receptor as a therapeutic target. Adv Protein Chem Struct Biol. 2016;104:39–79. https://doi.org/10.1016/bs.apcsb.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  14. Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 receptor in inflammatory diseases: Angel or Demon? Front Pharmacol. 2018;9:52. https://doi.org/10.3389/fphar.2018.00052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hughes BA, Gallemore RP, Miller SS. Transport mechanisms in the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium. New York, Oxford: Oxford University Press; 1998. p. 103–34.

    Google Scholar 

  16. Li JD, Gallemore RP, Dmitriev A, Steinberg RH. Light-dependent hydration of the space surrounding photoreceptors in chick retina. Invest Ophthalmol Vis Sci. 1994;35(6):2700–11.

    CAS  PubMed  Google Scholar 

  17. Bialek S, Miller SS. K+ and Cl- transport mechanisms in bovine pigment epithelium that could modulate subretinal space volume and composition. J Physiol. 1994;475(3):401–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DiMattio J, Degnan KJ, Zadunaisky JA. A model for transepithelial ion transport across the isolated retinal pigment epithelium of the frog. Exp Eye Res. 1983;37(5):409–20.

    Article  CAS  PubMed  Google Scholar 

  19. Edelman JL, Lin H, Miller SS. Potassium-induced chloride secretion across the frog retinal pigment epithelium. Am J Physiol. 1994;266(4 Pt 1):C957–66.

    Article  CAS  PubMed  Google Scholar 

  20. Gallemore RP, Hernandez E, Tayyanipour R, Fujii S, Steinberg RH. Basolateral membrane Cl- and K+ conductances of the dark-adapted chick retinal pigment epithelium. J Neurophysiol. 1993;70(4):1656–68.

    Article  CAS  PubMed  Google Scholar 

  21. Hu JG, Gallemore RP, Bok D, Frambach DA. Chloride transport in cultured fetal human retinal pigment epithelium. Exp Eye Res. 1996;62(4):443–8.

    Article  CAS  PubMed  Google Scholar 

  22. Joseph DP, Miller SS. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol. 1991;435:439–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. La Cour M. Cl- transport in frog retinal pigment epithelium. Exp Eye Res. 1992;54(6):921–31.

    Article  PubMed  Google Scholar 

  24. Miller SS, Edelman JL. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990;424:283–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamann S. Molecular mechanisms of water transport in the eye. Int Rev Cytol. 2002;215:395–431.

    Article  CAS  PubMed  Google Scholar 

  26. Wiederholt M, Zadunaisky JA. Decrease of intracellular chloride activity by furosemide in frog retinal pigment epithelium. Curr Eye Res. 1984;3(4):673–5.

    Article  CAS  PubMed  Google Scholar 

  27. Yamashita H, Yamamoto T. Changes in distribution of chloride ions in embryonic chicken retinal pigment epithelium. Jpn J Ophthalmol. 1990;34(1):22–9.

    CAS  PubMed  Google Scholar 

  28. Frambach DA, Roy CE, Valentine JL, Weiter JJ. Precocious retinal adhesion is affected by furosemide and ouabain. Curr Eye Res. 1989;8(6):553–6.

    Article  CAS  PubMed  Google Scholar 

  29. Griff ER, Shirao Y, Steinberg RH. Ba2+ unmasks K+ modulation of the Na+-K+ pump in the frog retinal pigment epithelium. J Gen Physiol. 1985;86(6):853–76.

    Article  CAS  PubMed  Google Scholar 

  30. Hughes BA, Shaikh A, Ahmad A. Effects of Ba2+ and Cs+ on apical membrane K+ conductance in toad retinal pigment epithelium. Am J Physiol. 1995;268(5 Pt 1):C1164–72.

    Article  CAS  PubMed  Google Scholar 

  31. Gallemore RP, Griff ER, Steinberg RH. Evidence in support of a photoreceptoral origin for the “light-peak substance”. Invest Ophthalmol Vis Sci. 1988;29(4):566–71.

    CAS  PubMed  Google Scholar 

  32. Gallemore RP, Steinberg RH. Effects of DIDS on the chick retinal pigment epithelium. I. Membrane potentials, apparent resistances, and mechanisms. J Neurosci. 1989;9(6):1968–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gallemore RP, Steinberg RH. Effects of DIDS on the chick retinal pigment epithelium. II. Mechanism of the light peak and other responses originating at the basal membrane. J Neurosci. 1989;9(6):1977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J. 2001;20(6):1289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wills NK, Weng T, Mo L, Hellmich HL, Yu A, Wang T, Buchheit S, Godley BF. Chloride channel expression in cultured human fetal RPE cells: response to oxidative stress. Invest Ophthalmol Vis Sci. 2000;41(13):4247–55.

    CAS  PubMed  Google Scholar 

  36. Keller SK, Jentsch TJ, Janicke I, Wiederholt M. Regulation of intracellular pH in cultured bovine retinal pigment epithelial cells. Pflugers Arch. 1988;411(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  37. Hamann S, la Cour M, Lui GM, Bundgaard M, Zeuthen T. Transport of protons and lactate in cultured human fetal retinal pigment epithelial cells. Pflugers Arch. 2000;440(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  38. Hughes BA, Miller SS, Farber DB. Adenylate cyclase stimulation alters transport in frog retinal pigment epithelium. Am J Physiol. 1987;252(4 Pt 1):C385–95.

    Article  CAS  PubMed  Google Scholar 

  39. Hughes BA, Miller SS, Joseph DP, Edelman JL. cAMP stimulates the Na+-K+ pump in frog retinal pigment epithelium. Am J Physiol. 1988;254(1 Pt 1):C84–98.

    Article  CAS  PubMed  Google Scholar 

  40. Hughes BA, Miller SS, Machen TE. Effects of cyclic AMP on fluid absorption and ion transport across frog retinal pigment epithelium. Measurements in the open-circuit state. J Gen Physiol. 1984;83(6):875–99.

    Article  CAS  PubMed  Google Scholar 

  41. Hughes BA, Segawa Y. cAMP-activated chloride currents in amphibian retinal pigment epithelial cells. J Physiol. 1993;466:749–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller S, Farber D. Cyclic AMP modulation of ion transport across frog retinal pigment epithelium. Measurements in the short-circuit state. J Gen Physiol. 1984;83(6):853–74.

    Article  CAS  PubMed  Google Scholar 

  43. Nao-i N, Gallemore RP, Steinberg RH. Effects of cAMP and IBMX on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses. Invest Ophthalmol Vis Sci. 1990;31(1):54–66.

    CAS  PubMed  Google Scholar 

  44. Blaug S, Quinn R, Quong J, Jalickee S, Miller SS. Retinal pigment epithelial function: a role for CFTR? Doc Ophthalmol. 2003;106(1):43–50.

    Article  PubMed  Google Scholar 

  45. Maminishkis A, Jalickee S, Blaug SA, Rymer J, Yerxa BR, Peterson WM, Miller SS. The P2Y(2) receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment in rat. Invest Ophthalmol Vis Sci. 2002;43(11):3555–66.

    PubMed  Google Scholar 

  46. Peterson WM, Meggyesy C, Yu K, Miller SS. Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci. 1997;17(7):2324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev. 2008;88(2):639–72. https://doi.org/10.1152/physrev.00022.2007.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson AA, Guziewicz KE, Lee CJ, Kalathur RC, Pulido JS, Marmorstein LY, Marmorstein AD. Bestrophin 1 and retinal disease. Prog Retin Eye Res. 2017;58:45–69. https://doi.org/10.1016/j.preteyeres.2017.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Keckeis S, Reichhart N, Roubeix C, Strauss O. Anoctamin2 (TMEM16B) forms the Ca2+-activated Cl- channel in the retinal pigment epithelium. Exp Eye Res. 2017;154:139–50. https://doi.org/10.1016/j.exer.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  50. Schreiber R, Kunzelmann K. Expression of anoctamins in retinal pigment epithelium (RPE). Pflugers Arch. 2016;468(11–12):1921–9. https://doi.org/10.1007/s00424-016-1898-2.

    Article  CAS  PubMed  Google Scholar 

  51. Sun H, Tsunenari T, Yau KW, Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A. 2002;99(6):4008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gallemore RP, Steinberg RH. Light-evoked modulation of basolateral membrane Cl- conductance in chick retinal pigment epithelium: the light peak and fast oscillation. J Neurophysiol. 1993;70(4):1669–80.

    Article  CAS  PubMed  Google Scholar 

  53. Marmorstein LY, Wu J, McLaughlin P, Yocom J, Karl MO, Neussert R, Wimmers S, Stanton JB, Gregg RG, Strauss O, Peachey NS, Marmorstein AD. The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol. 2006;127(5):577–89. https://doi.org/10.1085/jgp.200509473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Stanton JB, Wu J, Yu K, Hartzell HC, Peachey NS, Marmorstein LY, Marmorstein AD. Suppression of Ca2+ signaling in a mouse model of Best disease. Hum Mol Genet. 2010;19(6):1108–18. https://doi.org/10.1093/hmg/ddp583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weng TX, Godley BF, Jin GF, Mangini NJ, Kennedy BG, Yu AS, Wills NK. Oxidant and antioxidant modulation of chloride channels expressed in human retinal pigment epithelium. Am J Physiol Cell Physiol. 2002;283(3):C839–49.

    Article  CAS  PubMed  Google Scholar 

  56. Bialek S, Joseph DP, Miller SS. The delayed basolateral membrane hyperpolarization of the bovine retinal pigment epithelium: mechanism of generation. J Physiol. 1995;484(Pt 1):53–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dornonville de la Cour M. Ion transport in the retinal pigment epithelium. A study with double barrelled ion-selective microelectrodes. Acta Ophthalmol Suppl. 1993;(209):1–32.

    Google Scholar 

  58. la Cour M. The retinal pigment epithelium controls the potassium activity in the subretinal space. Acta Ophthalmol Suppl. 1985;173:9–10.

    PubMed  Google Scholar 

  59. Quinn RH, Miller SS. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992;33(13):3513–27.

    CAS  PubMed  Google Scholar 

  60. Takahira M, Hughes BA. Isolated bovine retinal pigment epithelial cells express delayed rectifier type and M-type K+ currents. Am J Physiol. 1997;273(3 Pt 1):C790–803.

    Article  CAS  PubMed  Google Scholar 

  61. Pattnaik BR, Hughes BA. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium. Am J Physiol Cell Physiol. 2012;302(5):C821–33. https://doi.org/10.1152/ajpcell.00269.2011.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, Hughes BA. KCNQ and KCNE potassium channel subunit expression in bovine retinal pigment epithelium. Exp Eye Res. 2013;116:424–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang X, Yang D, Hughes BA. KCNQ5/K(v)7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina. Am J Physiol Cell Physiol. 2011;301(5):C1017–26. https://doi.org/10.1152/ajpcell.00185.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Adorante JS, Miller SS. Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport. J Gen Physiol. 1990;96(6):1153–76.

    Article  CAS  PubMed  Google Scholar 

  65. Fischmeister R, Hartzell C. Volume-sensitivity of the bestrophin family of chloride channels. J Physiol. 2005;562(Pt 2):477–91.

    Article  CAS  PubMed  Google Scholar 

  66. Milenkovic A, Brandl C, Milenkovic VM, Jendryke T, Sirianant L, Wanitchakool P, Zimmermann S, Reiff CM, Horling F, Schrewe H, Schreiber R, Kunzelmann K, Wetzel CH, Weber BH. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A. 2015;112(20):E2630–9. https://doi.org/10.1073/pnas.1418840112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baylor D. How photons start vision. Proc Natl Acad Sci U S A. 1996;93(2):560–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Griff ER. Potassium-evoked responses from the retinal pigment epithelium of the toad Bufo marinus. Exp Eye Res. 1991;53(2):219–28.

    Article  CAS  PubMed  Google Scholar 

  69. Schneck ME, Fortune B, Adams AJ. The fast oscillation of the electrooculogram reveals sensitivity of the human outer retina/retinal pigment epithelium to glucose level. Vis Res. 2000;40(24):3447–53.

    Article  CAS  PubMed  Google Scholar 

  70. Steinberg RH, Linsenmeier RA, Griff ER. Three light-evoked responses of the retinal pigment epithelium. Vis Res. 1983;23(11):1315–23.

    Article  CAS  PubMed  Google Scholar 

  71. la Cour M, Lund-Andersen H, Zeuthen T. Potassium transport of the frog retinal pigment epithelium: autoregulation of potassium activity in the subretinal space. J Physiol. 1986;375:461–79.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Oakley B 2nd. Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977;70(4):405–25.

    Article  CAS  PubMed  Google Scholar 

  73. Linsenmeier RA, Steinberg RH. A light-evoked interaction of apical and basal membranes of retinal pigment epithelium: c-wave and light peak. J Neurophysiol. 1983;50(1):136–47.

    Article  CAS  PubMed  Google Scholar 

  74. Hughes BA, Steinberg RH. Voltage-dependent currents in isolated cells of the frog retinal pigment epithelium. J Physiol. 1990;428:273–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strauss O, Richard G, Wienrich M. Voltage-dependent potassium currents in cultured human retinal pigment epithelial cells. Biochem Biophys Res Commun. 1993;191(3):775–81.

    Article  CAS  PubMed  Google Scholar 

  76. Strauss O, Weiser T, Wienrich M. Potassium currents in cultured cells of the rat retinal pigment epithelium. Comp Biochem Physiol A Physiol. 1994;109(4):975–83.

    Article  CAS  PubMed  Google Scholar 

  77. Strauss O, Wienrich M. Cultured retinal pigment epithelial cells from RCS rats express an increased calcium conductance compared with cells from non-dystrophic rats. Pflugers Arch. 1993;425(1–2):68–76.

    Article  CAS  PubMed  Google Scholar 

  78. Tao Q, Rafuse PE, Kelly ME. Potassium currents in cultured rabbit retinal pigment epithelial cells. J Membr Biol. 1994;141(2):123–38.

    Article  CAS  PubMed  Google Scholar 

  79. Wen R, Lui GM, Steinberg RH. Whole-cell K+ currents in fresh and cultured cells of the human and monkey retinal pigment epithelium. J Physiol. 1993;465:121–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shimura M, Yuan Y, Chang JT, Zhang S, Campochiaro PA, Zack DJ, Hughes BA. Expression and permeation properties of the K(+) channel Kir7.1 in the retinal pigment epithelium. J Physiol. 2001;531(Pt 2):329–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang D, Pan A, Swaminathan A, Kumar G, Hughes BA. Expression and localization of the inwardly rectifying potassium channel Kir7.1 in native bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2003;44(7):3178–85.

    Article  PubMed  Google Scholar 

  82. Yuan Y, Shimura M, Hughes BA. Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH. J Physiol. 2003;549(Pt 2):429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kusaka S, Inanobe A, Fujita A, Makino Y, Tanemoto M, Matsushita K, Tano Y, Kurachi Y. Functional Kir7.1 channels localized at the root of apical processes in rat retinal pigment epithelium. J Physiol. 2001;531(Pt 1):27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pattnaik BR, Tokarz S, Asuma MP, Schroeder T, Sharma A, Mitchell JC, Edwards AO, Pillers DA. Snowflake vitreoretinal degeneration (SVD) mutation R162W provides new insights into Kir7.1 ion channel structure and function. PLoS One. 2013;8(8):e71744. https://doi.org/10.1371/journal.pone.0071744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.

    Article  CAS  PubMed  Google Scholar 

  86. Rosenthal R, Strauss O. Ca2+-channels in the RPE. Adv Exp Med Biol. 2002;514:225–35.

    Article  CAS  PubMed  Google Scholar 

  87. Drager UC. Calcium binding in pigmented and albino eyes. Proc Natl Acad Sci U S A. 1985;82(19):6716–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fijisawa K, Ye J, Zadunaisky JA. A Na+/Ca2+ exchange mechanism in apical membrane vesicles of the retinal pigment epithelium. Curr Eye Res. 1993;12(3):261–70.

    Article  CAS  PubMed  Google Scholar 

  89. Mangini NJ, Haugh-Scheidt L, Valle JE, Cragoe EJ Jr, Ripps H, Kennedy BG. Sodium-calcium exchanger in cultured human retinal pigment epithelium. Exp Eye Res. 1997;65(6):821–34.

    Article  CAS  PubMed  Google Scholar 

  90. Kennedy BG, Mangini NJ. Plasma membrane calcium-ATPase in cultured human retinal pigment epithelium. Exp Eye Res. 1996;63(5):547–56.

    Article  CAS  PubMed  Google Scholar 

  91. Wimmers S, Strauss O. Basal calcium entry in retinal pigment epithelial cells is mediated by TRPC channels. Invest Ophthalmol Vis Sci. 2007;48(12):5767–72. https://doi.org/10.1167/iovs.07-0412.

    Article  PubMed  Google Scholar 

  92. Strauss O. Transport mechanisms of the retinal pigment epithelium to maintain of visual function. Heat Mass Transf. 2014;50:303–13.

    Article  CAS  Google Scholar 

  93. Berna-Erro A, Jardin I, Salido GM, Rosado JA. Role of STIM2 in cell function and physiopathology. J Physiol. 2017;595(10):3111–28. https://doi.org/10.1113/JP273889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rosado JA, Diez R, Smani T, Jardin I. STIM and Orai1 variants in store-operated calcium entry. Front Pharmacol. 2015;6:325. https://doi.org/10.3389/fphar.2015.00325.

    Article  CAS  PubMed  Google Scholar 

  95. Strauss O, Steinhausen K, Mergler S, Stumpff F, Wiederholt M. Involvement of protein tyrosine kinase in the InsP3-induced activation of Ca2+-dependent Cl- currents in cultured cells of the rat retinal pigment epithelium. J Membr Biol. 1999;169(3):141–53.

    Article  CAS  PubMed  Google Scholar 

  96. Strauss O, Wiederholt M, Wienrich M. Activation of Cl- currents in cultured rat retinal pigment epithelial cells by intracellular applications of inositol-1,4,5-triphosphate: differences between rats with retinal dystrophy (RCS) and normal rats. J Membr Biol. 1996;151(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  97. Gomez NM, Tamm ER, Straubeta O. Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium. Pflugers Arch. 2013;465(4):481–95. https://doi.org/10.1007/s00424-012-1181-0.

    Article  CAS  PubMed  Google Scholar 

  98. Neussert R, Muller C, Milenkovic VM, Strauss O. The presence of bestrophin-1 modulates the Ca2+ recruitment from Ca2+ stores in the ER. Pflugers Arch. 2010;460(1):163–75. https://doi.org/10.1007/s00424-010-0840-2.

    Article  CAS  PubMed  Google Scholar 

  99. Muller C, Mas Gomez N, Ruth P, Strauss O. CaV1.3 L-type channels, maxiK Ca(2+)-dependent K(+) channels and bestrophin-1 regulate rhythmic photoreceptor outer segment phagocytosis by retinal pigment epithelial cells. Cell Signal. 2014;26(5):968–78. https://doi.org/10.1016/j.cellsig.2013.12.021.

    Article  CAS  PubMed  Google Scholar 

  100. Strauss O, Buss F, Rosenthal R, Fischer D, Mergler S, Stumpff F, Thieme H. Activation of neuroendocrine L-type channels (alpha1D subunits) in retinal pigment epithelial cells and brain neurons by pp60(c-src). Biochem Biophys Res Commun. 2000;270(3):806–10.

    Article  CAS  PubMed  Google Scholar 

  101. Strauss O, Wienrich M. Ca(2+)-conductances in cultured rat retinal pigment epithelial cells. J Cell Physiol. 1994;160(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  102. Ueda Y, Steinberg RH. Voltage-operated calcium channels in fresh and cultured rat retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1993;34(12):3408–18.

    CAS  PubMed  Google Scholar 

  103. Ueda Y, Steinberg RH. Dihydropyridine-sensitive calcium currents in freshly isolated human and monkey retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1995;36(2):373–80.

    CAS  PubMed  Google Scholar 

  104. Wimmers S, Coeppicus L, Rosenthal R, Strauss O. Expression profile of voltage-dependent Ca2+ channel subunits in the human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol. 2008;246(5):685–92. https://doi.org/10.1007/s00417-008-0778-7.

    Article  CAS  PubMed  Google Scholar 

  105. Wimmers S, Coeppicus L, Strauss O. Cloning and molecular characterization of L type Ca2+ channels in the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2004;45:e-abstract 3688.

    Google Scholar 

  106. Wimmers S, Halsband C, Seyler S, Milenkovic V, Strauss O. Voltage-dependent Ca2+ channels, not ryanodine receptors, activate Ca2+-dependent BK potassium channels in human retinal pigment epithelial cells. Mol Vis. 2008;14:2340–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Milenkovic VM, Krejcova S, Reichhart N, Wagner A, Strauss O. Interaction of bestrophin-1 and Ca2+ channel beta-subunits: identification of new binding domains on the bestrophin-1 C-terminus. PLoS One. 2011;6(4):e19364. https://doi.org/10.1371/journal.pone.0019364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reichhart N, Milenkovic VM, Halsband CA, Cordeiro S, Strauss O. Effect of bestrophin-1 on L-type Ca2+ channel activity depends on the Ca2+ channel beta-subunit. Exp Eye Res. 2010;91(5):630–9. https://doi.org/10.1016/j.exer.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

  109. Rosenthal R, Bakall B, Kinnick T, Peachey N, Wimmers S, Wadelius C, Marmorstein A, Strauss O. Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J. 2006;20(1):178–80. https://doi.org/10.1096/fj.05-4495fje.

    Article  CAS  PubMed  Google Scholar 

  110. Yu K, Xiao Q, Cui G, Lee A, Hartzell HC. The best disease-linked Cl- channel hBest1 regulates Ca V 1 (L-type) Ca2+ channels via src-homology-binding domains. J Neurosci. 2008;28(22):5660–70. https://doi.org/10.1523/JNEUROSCI.0065-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Strauss O. Pharmacology of the retinal pigment epithelium, the interface between retina and body system. Eur J Pharmacol. 2016;787:84–93. https://doi.org/10.1016/j.ejphar.2016.03.066.

    Article  CAS  PubMed  Google Scholar 

  112. Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA, Alitalo K, Kroon ME, Kijlstra A, van Hinsbergh VW, Schlingemann RO. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol. 1999;155(2):421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22(1):1–29.

    Article  CAS  PubMed  Google Scholar 

  114. Cao W, Tombran-Tink J, Elias R, Sezate S, Mrazek D, McGinnis JF. In vivo protection of photoreceptors from light damage by pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2001;42(7):1646–52.

    CAS  PubMed  Google Scholar 

  115. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999;285(5425):245–8.

    Article  CAS  PubMed  Google Scholar 

  116. Striessnig J. Pharmacology, structure and function of cardiac L-type Ca(2+) channels. Cell Physiol Biochem. 1999;9(4–5):242–69.

    Article  CAS  PubMed  Google Scholar 

  117. Sakai H, Saito T. Na+ and Ca2+ channel expression in cultured newt retinal pigment epithelial cells: comparison with neuronal types of ion channels. J Neurobiol. 1997;32(4):377–90.

    Article  CAS  PubMed  Google Scholar 

  118. Rosenthal R, Strauss O. Investigations of RPE cells of choriodal neovascular membranes from patients with age-related macula degeneration. Adv Exp Med Biol. 2003;533:107–13.

    Article  CAS  PubMed  Google Scholar 

  119. Strauss O, Heimann H, Foerster MH, Agostini H, Hansen LL, Rosenthal R. Activation of L-type Ca2+ channels is necessary for growth factor-dependent stimulation of VEGF secretion by RPE cells. Invest Ophthalmol Vis Sci. 2003;(44):e-abstract 3926.

    Google Scholar 

  120. Rosenthal R, Thieme H, Strauss O. Fibroblast growth factor receptor 2 (FGFR2) in brain neurons and retinal pigment epithelial cells act via stimulation of neuroendocrine L-type channels (Ca(v)1.3). FASEB J. 2001;15(6):970–7.

    Article  CAS  PubMed  Google Scholar 

  121. Rosenthal R, Heimann H, Agostini H, Martin G, Hansen LL, Strauss O. Ca2+ channels in retinal pigment epithelial cells regulate vascular endothelial growth factor secretion rates in health and disease. Mol Vis. 2007;13:443–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Busch C, Annamalai B, Abdusalamova K, Reichhart N, Huber C, Lin Y, Jo EAH, Zipfel PF, Skerka C, Wildner G, Diedrichs-Mohring M, Rohrer B, Strauss O. Anaphylatoxins activate Ca2+, Akt/PI3-kinase, and FOXO1/FoxP3 in the retinal pigment epithelium. Front Immunol. 2017;8:703. https://doi.org/10.3389/fimmu.2017.00703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Genewsky A, Jost I, Busch C, Huber C, Stindl J, Skerka C, Zipfel PF, Rohrer B, Strauss O. Activation of endogenously expressed ion channels by active complement in the retinal pigment epithelium. Pflugers Arch. 2015;467(10):2179–91. https://doi.org/10.1007/s00424-014-1656-2.

    Article  CAS  PubMed  Google Scholar 

  124. Kunchithapautham K, Bandyopadhyay M, Dahrouj M, Thurman JM, Rohrer B. Sublytic membrane-attack-complex activation and VEGF secretion in retinal pigment epithelial cells. Adv Exp Med Biol. 2012;723:23–30. https://doi.org/10.1007/978-1-4614-0631-0_4.

    Article  CAS  PubMed  Google Scholar 

  125. Kunchithapautham K, Rohrer B. Sublytic membrane-attack-complex (MAC) activation alters regulated rather than constitutive vascular endothelial growth factor (VEGF) secretion in retinal pigment epithelium monolayers. J Biol Chem. 2011;286(27):23717–24. https://doi.org/10.1074/jbc.M110.214593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rohrer B, Kunchithapautham K, Genewsky A, Strauss O. Prolonged SRC kinase activation, a mechanism to turn transient, sublytic complement activation into a sustained pathological condition in retinal pigment epithelium cells. Adv Exp Med Biol. 2014;801:221–7. https://doi.org/10.1007/978-1-4614-3209-8_29.

    Article  PubMed  Google Scholar 

  127. Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev. 2014;66(3):676–814. https://doi.org/10.1124/pr.113.008268.

    Article  CAS  PubMed  Google Scholar 

  128. Barro-Soria R, Stindl J, Muller C, Foeckler R, Todorov V, Castrop H, Strauss O. Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel. PLoS One. 2012;7(11):e49624. https://doi.org/10.1371/journal.pone.0049624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cordeiro S, Seyler S, Stindl J, Milenkovic VM, Strauss O. Heat-sensitive TRPV channels in retinal pigment epithelial cells: regulation of VEGF-A secretion. Invest Ophthalmol Vis Sci. 2010;51(11):6001–8. https://doi.org/10.1167/iovs.09-4720.

    Article  PubMed  Google Scholar 

  130. Reichhart N, Keckeis S, Fried F, Fels G, Strauss O. Regulation of surface expression of TRPV2 channels in the retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol. 2015;253(6):865–74. https://doi.org/10.1007/s00417-014-2917-7.

    Article  CAS  PubMed  Google Scholar 

  131. Kondo T, Vicent D, Suzuma K, Yanagisawa M, King GL, Holzenberger M, Kahn CR. Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. J Clin Invest. 2003;111(12):1835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rosenthal R, Wohlleben H, Malek G, Schlichting L, Thieme H, Bowes Rickman C, Strauss O. Insulin-like growth factor-1 contributes to neovascularization in age-related macular degeneration. Biochem Biophys Res Commun. 2004;323:1203–8.

    Article  CAS  PubMed  Google Scholar 

  133. Slomiany MG, Rosenzweig SA. Autocrine effects of IGF-1 induced VEGF and IGFBP-3 secretion in retinal pigment epithelial cell line ARPE-19. Am J Physiol Cell Physiol. 2004;287(3):C746–53.

    Article  CAS  PubMed  Google Scholar 

  134. Slomiany MG, Rosenzweig SA. IGF-1-induced VEGF and IGFBP-3 secretion correlates with increased HIF-1 alpha expression and activity in retinal pigment epithelial cell line D407. Invest Ophthalmol Vis Sci. 2004;45(8):2838–47.

    Article  PubMed  Google Scholar 

  135. Mergler S, Strauss O. Stimulation of L-type Ca(2+) channels by increase of intracellular InsP3 in rat retinal pigment epithelial cells. Exp Eye Res. 2002;74(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  136. Arden GB, Constable PA. The electro-oculogram. Prog Retin Eye Res. 2006;25(2):207–48. https://doi.org/10.1016/j.preteyeres.2005.11.001.

    Article  PubMed  Google Scholar 

  137. Fujii S, Gallemore RP, Hughes BA, Steinberg RH. Direct evidence for a basolateral membrane Cl- conductance in toad retinal pigment epithelium. Am J Physiol. 1992;262(2 Pt 1):C374–83.

    Article  CAS  PubMed  Google Scholar 

  138. Wu J, Marmorstein AD, Striessnig J, Peachey NS. Voltage-dependent calcium channel CaV1.3 subunits regulate the light peak of the electroretinogram. J Neurophysiol. 2007;97(5):3731–5. https://doi.org/10.1152/jn.00146.2007.

    Article  CAS  PubMed  Google Scholar 

  139. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2000;97(23):12758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Strauss O, Neussert R, Muller C, Milenkovic VM. A potential cytosolic function of bestrophin-1. Adv Exp Med Biol. 2012;723:603–10. https://doi.org/10.1007/978-1-4614-0631-0_77.

    Article  CAS  PubMed  Google Scholar 

  141. Mazzoni F, Safa H, Finnemann SC. Understanding photoreceptor outer segment phagocytosis: use and utility of RPE cells in culture. Exp Eye Res. 2014;126:51–60. https://doi.org/10.1016/j.exer.2014.01.010.

    Article  CAS  PubMed  Google Scholar 

  142. Besharse JC, Hollyfield JG, Rayborn ME. Photoreceptor outer segments: accelerated membrane renewal in rods after exposure to light. Science. 1977;196(4289):536–8.

    Article  CAS  PubMed  Google Scholar 

  143. Young RW, Bok D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol. 1969;42(2):392–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mitchell CH. Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol. 2001;534(Pt 1):193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mitchell CH, Reigada D. Purinergic signalling in the subretinal space: a role in the communication between the retina and the RPE. Purinergic Signal. 2008;4(2):101–7. https://doi.org/10.1007/s11302-007-9054-2.

    Article  CAS  PubMed  Google Scholar 

  146. Sanderson J, Dartt DA, Trinkaus-Randall V, Pintor J, Civan MM, Delamere NA, Fletcher EL, Salt TE, Grosche A, Mitchell CH. Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Muller cells, lens, trabecular meshwork, cornea and lacrimal gland. Exp Eye Res. 2014;127:270–9. https://doi.org/10.1016/j.exer.2014.08.009.

    Article  CAS  PubMed  Google Scholar 

  147. Reigada D, Mitchell CH. Release of ATP from retinal pigment epithelial cells involves both CFTR and vesicular transport. Am J Physiol Cell Physiol. 2005;288(1):C132–40. https://doi.org/10.1152/ajpcell.00201.2004.

    Article  CAS  PubMed  Google Scholar 

  148. Liu J, Lu W, Guha S, Baltazar GC, Coffey EE, Laties AM, Rubenstein RC, Reenstra WW, Mitchell CH. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells. Am J Physiol Cell Physiol. 2012;303(2):C160–9. https://doi.org/10.1152/ajpcell.00278.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Finnemann SC, Bonilha VL, Marmorstein AD, Rodriguez-Boulan E. Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Proc Natl Acad Sci U S A. 1997;94(24):12932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Karl MO, Kroeger W, Wimmers S, Milenkovic VM, Valtink M, Engelmann K, Strauss O. Endogenous Gas6 and Ca2+-channel activation modulate phagocytosis by retinal pigment epithelium. Cell Signal. 2008;20(6):1159–68. https://doi.org/10.1016/j.cellsig.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  151. Ryan JS, Baldridge WH, Kelly ME. Purinergic regulation of cation conductances and intracellular Ca2+ in cultured rat retinal pigment epithelial cells. J Physiol. 1999;520(Pt 3):745–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Strauß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichhart, N., Strauß, O. (2020). Ion Channels of the Retinal Pigment Epithelium. In: Klettner, A., Dithmar, S. (eds) Retinal Pigment Epithelium in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28384-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28384-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28383-4

  • Online ISBN: 978-3-030-28384-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics