Skip to main content

Advertisement

Log in

The role of voltage-gated ion channels in visual function and disease in mammalian photoreceptors

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Light activation of the classical light-sensing retinal neurons, the photoreceptors, results in a graded change in membrane potential that ultimately leads to a reduction in neurotransmitter release to the post-synaptic retinal neurons. Photoreceptors show striking powers of adaptation, and for visual processing to function optimally, they must adjust their gain to remain responsive to different levels of ambient light intensity. The presence of a tightly controlled balance of inward and outward currents modulated by several different types of ion channels is what gives photoreceptors their remarkably dynamic operating range. Part of the resetting and modulation of this operating range is controlled by potassium and calcium voltage-gated channels, which are involved in setting the dark resting potential and synapse signal processing, respectively. Their essential contribution to visual processing is further confirmed in patients suffering from cone dystrophy with supernormal rod response (CDSRR) and congenital stationary night blindness type 2 (CSNB2), both conditions that lead to irreversible vision loss. This review will discuss these two types of voltage-gated ion channels present in photoreceptors, focussing on their structure and physiology, and their role in visual processing. It will also discuss the use and benefits of knockout mouse models to further study the function of these channels and what routes to potential treatments could be applied for CDSRR and CSNB2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. al-Jandal N, Farrar GJ, Kiang AS, Humphries MM, Bannon N, Findlay JB, Humphries P, Kenna PF (1999) A novel mutation within the rhodopsin gene (Thr-94-Ile) causing autosomal dominant congenital stationary night blindness. Hum Mutat 13:75–81. https://doi.org/10.1002/(SICI)1098-1004(1999)13:1%3c75::AID-HUMU9%3e3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  2. Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L (2019) Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int J Mol Sci 20(14):3537. https://doi.org/10.3390/ijms20143537

  3. Arshavsky VY, Lamb TD, Pugh EN Jr (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187. https://doi.org/10.1146/annurev.physiol.64.082701.102229

    Article  CAS  PubMed  Google Scholar 

  4. Ba-Abbad R, Arno G, Carss K, Stirrups K, Penkett CJ, Moore AT, Michaelides M, Raymond FL, Webster AR, Holder GE (2016) Mutations in CACNA2D4 cause distinctive retinal dysfunction in humans. Ophthalmology 123(668–671):e662. https://doi.org/10.1016/j.ophtha.2015.09.045

    Article  Google Scholar 

  5. Bareil C, Hamel CP, Delague V, Arnaud B, Demaille J, Claustres M (2001) Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Hum Genet 108:328–334. https://doi.org/10.1007/s004390100496

    Article  CAS  PubMed  Google Scholar 

  6. Barnes S (1994) After transduction: response shaping and control of transmission by ion channels of the photoreceptor inner segments. Neuroscience 58:447–459

    Article  CAS  Google Scholar 

  7. Barnes S, Kelly ME (2002) Calcium channels at the photoreceptor synapse. Adv Exp Med Biol 514:465–476. https://doi.org/10.1007/978-1-4615-0121-3_28

    Article  CAS  PubMed  Google Scholar 

  8. Barrow AJ, Wu SM (2009) Complementary conductance changes by IKx and Ih contribute to membrane impedance stability during the rod light response. Channels (Austin) 3:301–307. https://doi.org/10.4161/chan.3.5.9454

    Article  CAS  Google Scholar 

  9. Baylor DA, Nunn BJ (1986) Electrical properties of the light-sensitive conductance of rods of the salamander Ambystoma tigrinum. J Physiol 371:115–145. https://doi.org/10.1113/jphysiol.1986.sp015964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, Mets M, Musarella MA, Boycott KM (1998) Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267. https://doi.org/10.1038/947

    Article  CAS  PubMed  Google Scholar 

  11. Beech DJ, Barnes S (1989) Characterization of a voltage-gated K+ channel that accelerates the rod response to dim light. Neuron 3:573–581. https://doi.org/10.1016/0896-6273(89)90267-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Birch DG, Bernstein PS, Iannacone A, Pennesi ME, Lam BL, Heckenlively J, Csaky K, Hartnett ME, Winthrop KL, Jayasundera T, Hughbanks-Wheaton DK, Warner J, Yang P, Fish GE, Teske MP, Sklaver NL, Erker L, Chegarnov E, Smith T, Wahle A, VanVeldhuisen PC, McCormack J, Lindblad R, Bramer S, Rose S, Zilliox P, Francis PJ, Weleber RG (2018) Effect of oral valproic acid vs placebo for vision loss in patients with autosomal dominant retinitis pigmentosa: a randomized phase 2 multicenter placebo-controlled clinical trial. JAMA Ophthalmol 136:849–856. https://doi.org/10.1001/jamaophthalmol.2018.1171

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bocksteins E (2016) Kv5, Kv6, Kv8, and Kv9 subunits: no simple silent bystanders. J Gen Physiol 147:105–125. https://doi.org/10.1085/jgp.201511507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bocksteins E, Raes AL, Van de Vijver G, Bruyns T, Van Bogaert PP, Snyders DJ (2009) Kv2.1 and silent Kv subunits underlie the delayed rectifier K+ current in cultured small mouse DRG neurons. Am J Physiol Cell Physiol 296:C1271-1278. https://doi.org/10.1152/ajpcell.00088.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borjesson SI, Elinder F (2008) Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Cell Biochem Biophys 52:149–174. https://doi.org/10.1007/s12013-008-9032-5

    Article  CAS  PubMed  Google Scholar 

  16. Burtscher V, Schicker K, Novikova E, Pohn B, Stockner T, Kugler C, Singh A, Zeitz C, Lancelot ME, Audo I, Leroy BP, Freissmuth M, Herzig S, Matthes J, Koschak A (2014) Spectrum of Cav1.4 dysfunction in congenital stationary night blindness type 2. Biochim Biophys Acta 1838:2053–2065. https://doi.org/10.1016/j.bbamem.2014.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cameron AM, Mahroo OA, Lamb TD (2006) Dark adaptation of human rod bipolar cells measured from the b-wave of the scotopic electroretinogram. J Physiol 575:507–526. https://doi.org/10.1113/jphysiol.2006.108027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carvalho LS, Vandenberghe LH (2015) Promising and delivering gene therapies for vision loss. Vision Res 111:124–133. https://doi.org/10.1016/j.visres.2014.07.013

    Article  PubMed  Google Scholar 

  19. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947. https://doi.org/10.1101/cshperspect.a003947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Catterall WA, Swanson TM (2015) Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol Pharmacol 88:141–150. https://doi.org/10.1124/mol.114.097659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang B, Heckenlively JR, Bayley PR, Brecha NC, Davisson MT, Hawes NL, Hirano AA, Hurd RE, Ikeda A, Johnson BA, McCall MA, Morgans CW, Nusinowitz S, Peachey NS, Rice DS, Vessey KA, Gregg RG (2006) The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis Neurosci 23:11–24. https://doi.org/10.1017/S095252380623102X

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen RW, Greenberg JP, Lazow MA, Ramachandran R, Lima LH, Hwang JC, Schubert C, Braunstein A, Allikmets R, Tsang SH (2012) Autofluorescence imaging and spectral-domain optical coherence tomography in incomplete congenital stationary night blindness and comparison with retinitis pigmentosa. Am J Ophthalmol 153(143–154):e142. https://doi.org/10.1016/j.ajo.2011.06.018

    Article  Google Scholar 

  23. Cho S, von Gersdorff H (2012) Ca(2+) influx and neurotransmitter release at ribbon synapses. Cell Calcium 52:208–216. https://doi.org/10.1016/j.ceca.2012.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cia D, Bordais A, Varela C, Forster V, Sahel JA, Rendon A, Picaud S (2005) Voltage-gated channels and calcium homeostasis in mammalian rod photoreceptors. J Neurophysiol 93:1468–1475. https://doi.org/10.1152/jn.00874.2004

    Article  CAS  PubMed  Google Scholar 

  25. Cideciyan AV, Zhao X, Nielsen L, Khani SC, Jacobson SG, Palczewski K (1998) Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci U S A 95:328–333. https://doi.org/10.1073/pnas.95.1.328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Czirjak G, Toth ZE, Enyedi P (2007) Characterization of the heteromeric potassium channel formed by kv2.1 and the retinal subunit kv8.2 in Xenopus oocytes. J Neurophysiol 98:1213–1222. https://doi.org/10.1152/jn.00493.2007

    Article  CAS  PubMed  Google Scholar 

  27. Czirják G, Tóth ZE, Enyedi P (2007) Characterization of the heteromeric potassium channel formed by kv2.1 and the retinal subunit kv8.2 in Xenopus oocytes. J Neurophysiol 98:1213–1222. https://doi.org/10.1152/jn.00493.2007

    Article  CAS  PubMed  Google Scholar 

  28. Dai X, Pang S, Wang J, FitzMaurice B, Pang J, Chang B (2019) Photoreceptor degeneration in a new Cacna1f mutant mouse model. Exp Eye Res 179:106–114. https://doi.org/10.1016/j.exer.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  29. Danciger M, Blaney J, Gao YQ, Zhao DY, Heckenlively JR, Jacobson SG, Farber DB (1995) Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa. Genomics 30:1–7. https://doi.org/10.1006/geno.1995.0001

    Article  CAS  PubMed  Google Scholar 

  30. Dryja TP, Hahn LB, Reboul T, Arnaud B (1996) Missense mutation in the gene encoding the alpha subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet 13:358–360. https://doi.org/10.1038/ng0796-358

    Article  CAS  PubMed  Google Scholar 

  31. Dryja TP, Rucinski DE, Chen SH, Berson EL (1999) Frequency of mutations in the gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:1859–1865

    CAS  PubMed  Google Scholar 

  32. Duan D, Yue Y, Engelhardt JF (2003) Dual vector expansion of the recombinant AAV packaging capacity. Methods Mol Biol 219:29–51

    CAS  PubMed  Google Scholar 

  33. Dyka FM, Molday LL, Chiodo VA, Molday RS, Hauswirth WW (2019) Dual ABCA4-AAV vector treatment reduces pathogenic retinal A2E accumulation in a mouse model of autosomal recessive Stargardt disease. Hum Gene Ther 30:1361–1370. https://doi.org/10.1089/hum.2019.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94

    Article  CAS  Google Scholar 

  35. Friedburg C, Allen CP, Mason PJ, Lamb TD (2004) Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram. J Physiol 556:819–834. https://doi.org/10.1113/jphysiol.2004.061523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu Y, Yau KW (2007) Phototransduction in mouse rods and cones. Pflugers Arch 454:805–819. https://doi.org/10.1007/s00424-006-0194-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A (1995) A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10:360–362. https://doi.org/10.1038/ng0795-360

    Article  CAS  PubMed  Google Scholar 

  38. Gayet-Primo J, Yaeger DB, Khanjian RA, Puthussery T (2018) Heteromeric KV2/KV8.2 Channels mediate delayed rectifier potassium currents in primate photoreceptors. J Neurosci 38:3414–3427. https://doi.org/10.1523/JNEUROSCI.2440-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gouras P, Eggers HM, MacKay CJ (1983) Cone dystrophy, nyctalopia, and supernormal rod responses A new retinal degeneration. Arch Ophthalmol 101:718–724. https://doi.org/10.1001/archopht.1983.01040010718003

    Article  CAS  PubMed  Google Scholar 

  40. Grieger JC, Samulski RJ (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 79:9933–9944. https://doi.org/10.1128/JVI.79.15.9933-9944.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu SM, Thompson DA, Srikumari CR, Lorenz B, Finckh U, Nicoletti A, Murthy KR, Rathmann M, Kumaramanickavel G, Denton MJ, Gal A (1997) Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 17:194–197. https://doi.org/10.1038/ng1097-194

    Article  CAS  PubMed  Google Scholar 

  42. Guimaraes TAC, Georgiou M, Robson AG, Michaelides M (2020) KCNV2 retinopathy: clinical features, molecular genetics and directions for future therapy. Ophthalmic Genet 41:208–215. https://doi.org/10.1080/13816810.2020.1766087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hart NS, Mountford JK, Voigt V, Fuller-Carter P, Barth M, Nerbonne JM, Hunt DM, Carvalho LS (2019) The role of the voltage-gated potassium channel proteins Kv8.2 and Kv2.1 in vision and retinal disease: insights from the study of mouse gene knock-out mutations. eneuro:ENEURO.0032–0019.2019. https://doi.org/10.1523/eneuro.0032-19.2019

  44. Hauke J, Schild A, Neugebauer A, Lappa A, Fricke J, Fauser S, Rosler S, Pannes A, Zarrinnam D, Altmuller J, Motameny S, Nurnberg G, Nurnberg P, Hahnen E, Beck BB (2013) A novel large in-frame deletion within the CACNA1F gene associates with a cone-rod dystrophy 3-like phenotype. PLoS ONE 8:e76414. https://doi.org/10.1371/journal.pone.0076414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heidelberger R, Thoreson WB, Witkovsky P (2005) Synaptic transmission at retinal ribbon synapses. Prog Retin Eye Res 24:682–720. https://doi.org/10.1016/j.preteyeres.2005.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hemara-Wahanui A, Berjukow S, Hope CI, Dearden PK, Wu SB, Wilson-Wheeler J, Sharp DM, Lundon-Treweek P, Clover GM, Hoda JC, Striessnig J, Marksteiner R, Hering S, Maw MA (2005) A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc Natl Acad Sci U S A 102:7553–7558. https://doi.org/10.1073/pnas.0501907102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hood DC, Cideciyan AV, Halevy DA, Jacobson SG (1996) Sites of disease action in a retinal dystrophy with supernormal and delayed rod electroretinogram b-waves. Vision Res 36:889–901

    Article  CAS  Google Scholar 

  48. Hope CI, Sharp DM, Hemara-Wahanui A, Sissingh JI, Lundon P, Mitchell EA, Maw MA, Clover GM (2005) Clinical manifestations of a unique X-linked retinal disorder in a large New Zealand family with a novel mutation in CACNA1F, the gene responsible for CSNB2. Clin Exp Ophthalmol 33:129–136. https://doi.org/10.1111/j.1442-9071.2005.00987.x

    Article  PubMed  Google Scholar 

  49. Hove MN, Kilic-Biyik KZ, Trotter A, Gronskov K, Sander B, Larsen M, Carroll J, Bech-Hansen T, Rosenberg T (2016) Clinical characteristics, mutation spectrum, and prevalence of aland eye disease/incomplete congenital stationary night blindness in Denmark. Invest Ophthalmol Vis Sci 57:6861–6869. https://doi.org/10.1167/iovs.16-19445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jalkanen R, Bech-Hansen NT, Tobias R, Sankila EM, Mantyjarvi M, Forsius H, de la Chapelle A, Alitalo T (2007) A novel CACNA1F gene mutation causes Aland Island eye disease. Invest Ophthalmol Vis Sci 48:2498–2502. https://doi.org/10.1167/iovs.06-1103

    Article  PubMed  Google Scholar 

  51. Jalkanen R, Mantyjarvi M, Tobias R, Isosomppi J, Sankila EM, Alitalo T, Bech-Hansen NT (2006) X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet 43:699–704. https://doi.org/10.1136/jmg.2006.040741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jan LY, Jan YN (2012) Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol 590:2591–2599. https://doi.org/10.1113/jphysiol.2011.224212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jia S, Muto A, Orisme W, Henson HE, Parupalli C, Ju B, Baier H, Taylor MR (2014) Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation. Hum Mol Genet 23:2981–2994. https://doi.org/10.1093/hmg/ddu009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang X, Rashwan R, Voigt V, Nerbonne J, Hunt DM, Carvalho LS (2021) Molecular, cellular and functional changes in the retinas of young adult mice lacking the voltage-gated K+ channel subunits Kv8.2 and K2.1. Int J Mol Sci 22:4877

    Article  CAS  Google Scholar 

  55. Jorge BS, Campbell CM, Miller AR, Rutter ED, Gurnett CA, Vanoye CG, George AL, Kearney JA (2011) Voltage-gated potassium channel KCNV2 (Kv8.2) contributes to epilepsy susceptibility. Proc Natl Acad Sci U S A 108:5443–5448. https://doi.org/10.1073/pnas.1017539108

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kato M, Kobayashi R, Watanabe I (1993) Cone dysfunction and supernormal scotopic electroretinogram with a high-intensity stimulus. A report of three cases. Doc Ophthalmol 84:71–81. https://doi.org/10.1007/BF01203284

    Article  CAS  PubMed  Google Scholar 

  57. Knoflach D, Kerov V, Sartori SB, Obermair GJ, Schmuckermair C, Liu X, Sothilingam V, Garcia Garrido M, Baker SA, Glosmann M, Schicker K, Seeliger M, Lee A, Koschak A (2013) Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2. Channels (Austin) 7:503–513. https://doi.org/10.4161/chan.26368

    Article  CAS  Google Scholar 

  58. Ko ML, Liu Y, Dryer SE, Ko GY (2007) The expression of L-type voltage-gated calcium channels in retinal photoreceptors is under circadian control. J Neurochem 103:784–792. https://doi.org/10.1111/j.1471-4159.2007.04816.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kohl S, Coppieters F, Meire F, Schaich S, Roosing S, Brennenstuhl C, Bolz S, van Genderen MM, Riemslag FC, C European Retinal Disease, Lukowski R, den Hollander AI, Cremers FP, De Baere E, Hoyng CB, Wissinger B (2012) A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia. Am J Hum Genet 91:527–532. https://doi.org/10.1016/j.ajhg.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kourennyi DE, Liu XD, Hart J, Mahmud F, Baldridge WH, Barnes S (2004) Reciprocal modulation of calcium dynamics at rod and cone photoreceptor synapses by nitric oxide. J Neurophysiol 92:477–483. https://doi.org/10.1152/jn.00606.2003

    Article  CAS  PubMed  Google Scholar 

  61. Kurenny DE, Barnes S (1994) Proton modulation of M-like potassium current (IKx) in rod photoreceptors. Neurosci Lett 170:225–228. https://doi.org/10.1016/0304-3940(94)90324-7

    Article  CAS  PubMed  Google Scholar 

  62. Laird JG, Gardner SH, Kopel AJ, Kerov V, Lee A, Baker SA (2019) Rescue of rod synapses by induction of Cav Alpha 1F in the mature Cav1.4 knock-out mouse retina. Invest Ophthalmol Vis Sci 60:3150–3161. https://doi.org/10.1167/iovs.19-27226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu X, Kerov V, Haeseleer F, Majumder A, Artemyev N, Baker SA, Lee A (2013) Dysregulation of Ca(v)1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2. Channels (Austin) 7:514–523. https://doi.org/10.4161/chan.26376

    Article  CAS  Google Scholar 

  64. Liu XD, Kourennyi DE (2004) Effects of tetraethylammonium on Kx channels and simulated light response in rod photoreceptors. Ann Biomed Eng 32:1428–1442. https://doi.org/10.1114/b:abme.0000042230.99614.8d

    Article  PubMed  Google Scholar 

  65. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903. https://doi.org/10.1126/science.1116269

    Article  CAS  PubMed  Google Scholar 

  66. Maddox JW, Randall KL, Yadav RP, Williams B, Hagen J, Derr PJ, Kerov V, Della Santina L, Baker SA, Artemyev N, Hoon M, Lee A (2020) A dual role for Cav1.4 Ca(2+) channels in the molecular and structural organization of the rod photoreceptor synapse. Elife 9. https://doi.org/10.7554/eLife.62184

  67. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, Bumcrot D, Chao H, Ciulla DM, DaSilva JA, Dass A, Dhanapal V, Fennell TJ, Friedland AE, Giannoukos G, Gloskowski SW, Glucksmann A, Gotta GM, Jayaram H, Haskett SJ, Hopkins B, Horng JE, Joshi S, Marco E, Mepani R, Reyon D, Ta T, Tabbaa DG, Samuelsson SJ, Shen S, Skor MN, Stetkiewicz P, Wang T, Yudkoff C, Myer VE, Albright CF, Jiang H (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25:229–233. https://doi.org/10.1038/s41591-018-0327-9

    Article  CAS  PubMed  Google Scholar 

  68. Mansergh F, Orton NC, Vessey JP, Lalonde MR, Stell WK, Tremblay F, Barnes S, Rancourt DE, Bech-Hansen NT (2005) Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum Mol Genet 14:3035–3046. https://doi.org/10.1093/hmg/ddi336

    Article  CAS  PubMed  Google Scholar 

  69. Maricq AV, Korenbrot JI (1990) Potassium currents in the inner segment of single retinal cone photoreceptors. J Neurophysiol 64:1929–1940. https://doi.org/10.1152/jn.1990.64.6.1929

    Article  CAS  PubMed  Google Scholar 

  70. Melis R, Stauffer D, Zhao X, Zhu XL, Albrecht B, Pongs O, Brothman A, Leppert M (1995) Physical and genetic localization of a Shab subfamily potassium channel (KCNB1) gene to chromosomal region 20q13.2. Genomics 25:285–287. https://doi.org/10.1016/0888-7543(95)80138-C

    Article  CAS  PubMed  Google Scholar 

  71. Michaelides M, Holder GE, Webster AR, Hunt DM, Bird AC, Fitzke FW, Mollon JD, Moore AT (2005) A detailed phenotypic study of “cone dystrophy with supernormal rod ERG.” Br J Ophthalmol 89:332–339

    Article  CAS  Google Scholar 

  72. Michalakis S, Geiger H, Haverkamp S, Hofmann F, Gerstner A, Biel M (2005) Impaired opsin targeting and cone photoreceptor migration in the retina of mice lacking the cyclic nucleotide-gated channel CNGA3. Invest Ophthalmol Vis Sci 46:1516–1524. https://doi.org/10.1167/iovs.04-1503

    Article  PubMed  Google Scholar 

  73. Michalakis S, Shaltiel L, Sothilingam V, Koch S, Schludi V, Krause S, Zeitz C, Audo I, Lancelot ME, Hamel C, Meunier I, Preising MN, Friedburg C, Lorenz B, Zabouri N, Haverkamp S, Garrido MG, Tanimoto N, Seeliger MW, Biel M, Wahl-Schott CA (2017) Mosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2. Hum Mol Genet 26:466. https://doi.org/10.1093/hmg/ddw424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moriondo A, Pelucchi B, Rispoli G (2001) Calcium-activated potassium current clamps the dark potential of vertebrate rods. Eur J Neurosci 14:19–26. https://doi.org/10.1046/j.0953-816x.2001.01605.x

    Article  CAS  PubMed  Google Scholar 

  75. Moriondo A, Rispoli G (2010) The contribution of cationic conductances to the potential of rod photoreceptors. Eur Biophys J 39:889–902. https://doi.org/10.1007/s00249-009-0419-z

    Article  CAS  PubMed  Google Scholar 

  76. Nakamura M, Ito S, Piao CH, Terasaki H, Miyake Y (2003) Retinal and optic disc atrophy associated with a CACNA1F mutation in a Japanese family. Arch Ophthalmol 121:1028–1033. https://doi.org/10.1001/archopht.121.7.1028

    Article  CAS  PubMed  Google Scholar 

  77. Newbold RJ, Deery EC, Walker CE, Wilkie SE, Srinivasan N, Hunt DM, Bhattacharya SS, Warren MJ (2001) The destabilization of human GCAP1 by a proline to leucine mutation might cause cone-rod dystrophy. Hum Mol Genet 10:47–54. https://doi.org/10.1093/hmg/10.1.47

    Article  CAS  PubMed  Google Scholar 

  78. Oakley B 2nd, Green DG (1976) Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol 39:1117–1133

    Article  CAS  Google Scholar 

  79. Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (2002) Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc Natl Acad Sci U S A 99:7986–7991. https://doi.org/10.1073/pnas.122617999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (2002) Obligatory heterotetramerization of three previously uncharacterized Kv channel α-subunits identified in the human genome. Proc Natl Acad Sci U S A 99:7986–7991. https://doi.org/10.1073/pnas.122617999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Paquet-Durand F, Beck S, Michalakis S, Goldmann T, Huber G, Muhlfriedel R, Trifunovic D, Fischer MD, Fahl E, Duetsch G, Becirovic E, Wolfrum U, van Veen T, Biel M, Tanimoto N, Seeliger MW (2011) A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum Mol Genet 20:941–947. https://doi.org/10.1093/hmg/ddq539

    Article  CAS  PubMed  Google Scholar 

  82. Rabl K, Thoreson WB (2002) Calcium-dependent inactivation and depletion of synaptic cleft calcium ions combine to regulate rod calcium currents under physiological conditions. Eur J Neurosci 16:2070–2077. https://doi.org/10.1046/j.1460-9568.2002.02277.x

    Article  PubMed  Google Scholar 

  83. Rager G (1979) The cellular origin of the b-wave in the electroretinogram — a developmental approach. J Comp Neurol 188:225–244. https://doi.org/10.1002/cne.901880203

    Article  CAS  PubMed  Google Scholar 

  84. Regnier G, Bocksteins E, Van de Vijver G, Snyders DJ, van Bogaert PP (2016) The contribution of Kv2.2-mediated currents decreases during the postnatal development of mouse dorsal root ganglion neurons. Physiol Rep 4. https://doi.org/10.14814/phy2.12731

  85. Regus-Leidig H, Atorf J, Feigenspan A, Kremers J, Maw MA, Brandstatter JH (2014) Photoreceptor degeneration in two mouse models for congenital stationary night blindness type 2. PLoS ONE 9:e86769. https://doi.org/10.1371/journal.pone.0086769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosenberg T, Simonsen SE (1993) Retinal cone dysfunction of supernormal rod ERG type Five new cases. Acta Ophthalmol (Copenh) 71:246–255. https://doi.org/10.1111/j.1755-3768.1993.tb04998.x

    Article  CAS  Google Scholar 

  87. Sandberg MA, Miller S, Berson EL (1990) Rod electroretinograms in an elevated cyclic guanosine monophosphate-type human retinal degeneration. Comparison with retinitis pigmentosa. Invest Ophthalmol Vis Sci 31:2283–2287

    CAS  PubMed  Google Scholar 

  88. Schnetkamp PP (2004) The SLC24 Na+/Ca2+-K+ exchanger family: vision and beyond. Pflugers Arch 447:683–688. https://doi.org/10.1007/s00424-003-1069-0

    Article  CAS  PubMed  Google Scholar 

  89. Shah NH, Aizenman E (2014) Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 5:38–58. https://doi.org/10.1007/s12975-013-0297-7

    Article  CAS  PubMed  Google Scholar 

  90. Smith KE, Wilkie SE, Tebbs-Warner JT, Jarvis BJ, Gallasch L, Stocker M, Hunt DM (2012) Functional analysis of missense mutations in Kv8.2 causing cone dystrophy with supernormal rod electroretinogram. J Biol Chem 287:43972–43983. https://doi.org/10.1074/jbc.M112.388033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Speca DJ, Ogata G, Mandikian D, Bishop HI, Wiler SW, Eum K, Wenzel HJ, Doisy ET, Matt L, Campi KL, Golub MS, Nerbonne JM, Hell JW, Trainor BC, Sack JT, Schwartzkroin PA, Trimmer JS (2014) Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. Genes Brain Behav 13:394–408. https://doi.org/10.1111/gbb.12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Specht D, Wu SB, Turner P, Dearden P, Koentgen F, Wolfrum U, Maw M, Brandstatter JH, tom Dieck S, (2009) Effects of presynaptic mutations on a postsynaptic Cacna1s calcium channel colocalized with mGluR6 at mouse photoreceptor ribbon synapses. Invest Ophthalmol Vis Sci 50:505–515. https://doi.org/10.1167/iovs.08-2758

    Article  PubMed  Google Scholar 

  93. Stas JI, Bocksteins E, Jensen CS, Schmitt N, Snyders DJ (2016) The anticonvulsant retigabine suppresses neuronal KV2-mediated currents. Sci Rep 6:35080. https://doi.org/10.1038/srep35080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stockner T, Koschak A (2013) What can naturally occurring mutations tell us about Ca(v)1.x channel function? Biochim Biophys Acta 1828:1598–1607. https://doi.org/10.1016/j.bbamem.2012.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Swartz KJ, MacKinnon R (1995) An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15:941–949

    Article  CAS  Google Scholar 

  96. Thiadens AA, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RW, De Baere E, Koenekoop RK, van Schooneveld MJ, Strom TM, van Lith-Verhoeven JJ, Lotery AJ, van Moll-Ramirez N, Leroy BP, van den Born LI, Hoyng CB, Cremers FP, Klaver CC (2009) Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 85:240–247. https://doi.org/10.1016/j.ajhg.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thiagalingam S, McGee TL, Weleber RG, Sandberg MA, Trzupek KM, Berson EL, Dryja TP (2007) Novel mutations in the KCNV2 gene in patients with cone dystrophy and a supernormal rod electroretinogram. Ophthalmic Genet 28:135–142. https://doi.org/10.1080/13816810701503681

    Article  CAS  PubMed  Google Scholar 

  98. Thoreson WB (2007) Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol 36:205–223. https://doi.org/10.1007/s12035-007-0019-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Trapani I, Toriello E, de Simone S, Colella P, Iodice C, Polishchuk EV, Sommella A, Colecchi L, Rossi S, Simonelli F, Giunti M, Bacci ML, Polishchuk RS, Auricchio A (2015) Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease. Hum Mol Genet 24:6811–6825. https://doi.org/10.1093/hmg/ddv386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tsunoda S, Salkoff L (1995) The major delayed rectifier in both Drosophila neurons and muscle is encoded by Shab. J Neurosci 15:5209–5221

    Article  CAS  Google Scholar 

  101. Ueyama H, Kuwayama S, Imai H, Tanabe S, Oda S, Nishida Y, Wada A, Shichida Y, Yamade S (2002) Novel missense mutations in red/green opsin genes in congenital color-vision deficiencies. Biochem Biophys Res Commun 294:205–209. https://doi.org/10.1016/S0006-291X(02)00458-8

    Article  CAS  PubMed  Google Scholar 

  102. Valet M, Quoilin M, Lejeune T, Stoquart G, Van Pesch V, El Sankari S, Detrembleur C, Warlop T (2019) Effects of fampridine in people with multiple sclerosis: a systematic review and meta-analysis. CNS Drugs 33:1087–1099. https://doi.org/10.1007/s40263-019-00671-x

    Article  CAS  PubMed  Google Scholar 

  103. Veizerova L, Svetlik J, Kettmann V (2007) Voltage gated calcium channels: structure, characteristics and terminology. Ceska Slov Farm 56:178–182

    CAS  PubMed  Google Scholar 

  104. Vent-Schmidt RYJ, Wen RH, Zong Z, Chiu CN, Tam BM, May CG, Moritz OL (2017) Opposing effects of valproic acid treatment mediated by histone deacetylase inhibitor activity in four transgenic X. laevis models of Retinitis Pigmentosa. J Neurosci 37:1039–1054. https://doi.org/10.1523/JNEUROSCI.1647-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vinberg F, Chen J, Kefalov VJ (2018) Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 67:87–101. https://doi.org/10.1016/j.preteyeres.2018.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vinberg F, Wang T, De Maria A, Zhao H, Bassnett S, Chen J, Kefalov VJ (2017) The Na(+)/Ca(2+), K(+) exchanger NCKX4 is required for efficient cone-mediated vision. Elife 6. https://doi.org/10.7554/eLife.24550

  107. Vincent A, Wright T, Day MA, Westall CA, Heon E (2011) A novel p.Gly603Arg mutation in CACNA1F causes Aland island eye disease and incomplete congenital stationary night blindness phenotypes in a family. Mol Vis 17:3262–3270

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Vincent A, Wright T, Garcia-Sanchez Y, Kisilak M, Campbell M, Westall C, Heon E (2013) Phenotypic characteristics including in vivo cone photoreceptor mosaic in KCNV2-related “cone dystrophy with supernormal rod electroretinogram.” Invest Ophthalmol Vis Sci 54:898–908. https://doi.org/10.1167/iovs.12-10971

    Article  CAS  PubMed  Google Scholar 

  109. Waldner DM, Bech-Hansen NT, Stell WK (2018) Channeling Vision: CaV1.4-A Critical Link in Retinal Signal Transmission. Biomed Res Int 2018:7272630. https://doi.org/10.1155/2018/7272630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Waldner DM, Giraldo Sierra NC, Bonfield S, Nguyen L, Dimopoulos IS, Sauve Y, Stell WK, Bech-Hansen NT (2018) Cone dystrophy and ectopic synaptogenesis in a Cacna1f loss of function model of congenital stationary night blindness (CSNB2A). Channels (Austin) 12:17–33. https://doi.org/10.1080/19336950.2017.1401688

    Article  CAS  Google Scholar 

  111. Waldner DM, Ito K, Chen LL, Nguyen L, Chow RL, Lee A, Rancourt DE, Tremblay F, Stell WK, Bech-Hansen NT (2020) Transgenic Expression of Cacna1f Rescues Vision and Retinal Morphology in a Mouse Model of Congenital Stationary Night Blindness 2A (CSNB2A). Transl Vis Sci Technol 9:19. https://doi.org/10.1167/tvst.9.11.19

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97:13714–13719. https://doi.org/10.1073/pnas.240335297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang MC, Dolphin A, Kitmitto A (2004) L-type voltage-gated calcium channels: understanding function through structure. FEBS Lett 564:245–250. https://doi.org/10.1016/S0014-5793(04)00253-4

    Article  CAS  PubMed  Google Scholar 

  114. Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, Zhang H, Lin W, Zack DJ, Bhattacharya SS, Warren MJ, Hunt DM, Zhang K (2001) Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet 69:471–480. https://doi.org/10.1086/323265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wilkie SE, Newbold RJ, Deery E, Walker CE, Stinton I, Ramamurthy V, Hurley JB, Bhattacharya SS, Warren MJ, Hunt DM (2000) Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Hum Mol Genet 9:3065–3073. https://doi.org/10.1093/hmg/9.20.3065

    Article  CAS  PubMed  Google Scholar 

  116. Williams B, Lopez JA, Maddox JW, Lee A (2020) Functional impact of a congenital stationary night blindness type 2 mutation depends on subunit composition of Cav1.4 Ca(2+) channels. J Biol Chem. https://doi.org/10.1074/jbc.RA120.014138

  117. Wissinger B, Dangel S, Jagle H, Hansen L, Baumann B, Rudolph G, Wolf C, Bonin M, Koeppen K, Ladewig T, Kohl S, Zrenner E, Rosenberg T (2008) Cone dystrophy with supernormal rod response is strictly associated with mutations in KCNV2. Invest Ophthalmol Vis Sci 49:751–757. https://doi.org/10.1167/iovs.07-0471

    Article  PubMed  Google Scholar 

  118. Wissinger B, Schaich S, Baumann B, Bonin M, Jagle H, Friedburg C, Varsanyi B, Hoyng CB, Dollfus H, Heckenlively JR, Rosenberg T, Rudolph G, Kellner U, Salati R, Plomp A, De Baere E, Andrassi-Darida M, Sauer A, Wolf C, Zobor D, Bernd A, Leroy BP, Enyedi P, Cremers FP, Lorenz B, Zrenner E, Kohl S (2011) Large deletions of the KCNV2 gene are common in patients with cone dystrophy with supernormal rod response. Hum Mutat. https://doi.org/10.1002/humu.21580

    Article  PubMed  Google Scholar 

  119. Wray D (2004) The roles of intracellular regions in the activation of voltage-dependent potassium channels. Eur Biophys J 33:194–200. https://doi.org/10.1007/s00249-003-0363-2

    Article  CAS  PubMed  Google Scholar 

  120. Wu H, Cowing JA, Michaelides M, Wilkie SE, Jeffery G, Jenkins SA, Mester V, Bird AC, Robson AG, Holder GE, Moore AT, Hunt DM, Webster AR (2006) Mutations in the gene KCNV2 encoding a voltage-gated potassium channel subunit cause “cone dystrophy with supernormal rod electroretinogram” in humans. Am J Hum Genet 79:574–579. https://doi.org/10.1086/507568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001. https://doi.org/10.1038/nrd2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wycisk KA, Zeitz C, Feil S, Wittmer M, Forster U, Neidhardt J, Wissinger B, Zrenner E, Wilke R, Kohl S, Berger W (2006) Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet 79:973–977. https://doi.org/10.1086/508944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xu X, Xu X, Hao Y, Zhu X, Lu J, Ouyang X, Lu Y, Huang X, Li Y, Wang J, Shen X (2020) Antispasmodic drug drofenine as an inhibitor of Kv2.1 channel ameliorates peripheral neuropathy in diabetic mice. iScience 23:101617. https://doi.org/10.1016/j.isci.2020.101617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yau KW (1994) Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 35:9–32

    CAS  PubMed  Google Scholar 

  125. Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870. https://doi.org/10.1124/pr.114.009654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zeitz C, Robson AG, Audo I (2015) Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 45:58–110. https://doi.org/10.1016/j.preteyeres.2014.09.001

    Article  PubMed  Google Scholar 

  127. Zelinger L, Wissinger B, Eli D, Kohl S, Sharon D, Banin E (2013) Cone dystrophy with supernormal rod response: novel KCNV2 mutations in an underdiagnosed phenotype. Ophthalmology 120:2338–2343. https://doi.org/10.1016/j.ophtha.2013.03.031

    Article  PubMed  Google Scholar 

  128. Zhai J, Lin QS, Hu Z, Wong R, Soong TW (2016) Chapter 11 - Alternative Splicing and RNA Editing of Voltage-Gated Ion Channels: Implications in Health and Disease A2. In: GS Pitt (Eds) Ion Channels in Health and Disease. Academic Press, Boston, pp 265-292. https://doi.org/10.1016/B978-0-12-802002-9.00011-X

  129. Zhu X, Chen Y, Xu X, Xu X, Lu Y, Huang X, Zhou J, Hu L, Wang J, Shen X (2020) SP6616 as a Kv2.1 inhibitor efficiently ameliorates peripheral neuropathy in diabetic mice. EBioMedicine 61:103061. https://doi.org/10.1016/j.ebiom.2020.103061

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zobor D, Kohl S, Wissinger B, Zrenner E, Jägle H (2012) Rod and cone function in patients with KCNV2 retinopathy. PLoS ONE 7:e46762. https://doi.org/10.1371/journal.pone.0046762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Lions Eye Institute (LSC, DMH).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the draft manuscript and revised subsequent versions.

Corresponding author

Correspondence to Livia S. Carvalho.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Function and Dysfunction in Vertebrate Photoreceptor Cells in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashwan, R., Hunt, D.M. & Carvalho, L.S. The role of voltage-gated ion channels in visual function and disease in mammalian photoreceptors. Pflugers Arch - Eur J Physiol 473, 1455–1468 (2021). https://doi.org/10.1007/s00424-021-02595-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02595-2

Keywords

Navigation