Skip to main content

RPE and Stem Cell Therapy

  • Chapter
  • First Online:
Retinal Pigment Epithelium in Health and Disease
  • 949 Accesses

Abstract

Retinal pigment epithelium (RPE) is vitally important for supporting photoreceptor functions and welfare. RPE degeneration has a major role in pathogenesis of many retinal diseases including wet and dry forms of age-related macular degeneration (AMD). The loss of RPE cell functions leads to the degradation of photoreceptors and as a consequence to either partial or total loss of vision. Today, only cell replacement can restore RPE functionality, setting high demands for development of cell transplantation therapy. Transplantation of RPE cells derived from fetal, cadaveric, and stem cell sources have been extensively studied in different animal models and also in recent clinical trials. Based on current knowledge, human pluripotent stem cells (hPSC), including human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC), provide an exhaustless source of cells for cell-based therapies. Since 2004, numerous research groups have reported successful differentiation of functional RPE cells from hPSCs (hPSC-RPE) using a wide variety of methods. Two RPE cell transplantation strategies—each with their own pros and cons—are currently under development: injection of a single-cell suspension, and transplantation of intact RPE sheet with or without a biomaterial-based scaffold. So far, the ongoing clinical trials with hPSC-RPE have not raised any safety concerns, but additional proof of efficacy needs further trials. In light of the recent advances and the exponential activity in the field, this should be possible in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81. https://doi.org/10.1152/physrev.00021.2004.

    Article  CAS  Google Scholar 

  2. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Heal. 2014;2:2–e116. https://doi.org/10.1016/S2214-109X(13)70145-1.

    Article  Google Scholar 

  3. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119:2537–48. https://doi.org/10.1016/j.ophtha.2012.09.006.

    Article  PubMed  Google Scholar 

  4. Martin DF, Maguire MG, Ying G, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364:1897–908. https://doi.org/10.1056/NEJMoa1102673.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31. https://doi.org/10.1056/NEJMoa054481.

    Article  CAS  PubMed  Google Scholar 

  6. Group A. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the age-related eye disease study 2 (AREDS2) randomized clinical trial. JAMA J Am Med Assoc. 2013;2:1–11. https://doi.org/10.1001/jama.2013.4997.

    Article  CAS  Google Scholar 

  7. Zarbin M. Cell-based therapy for degenerative retinal disease. Trends Mol Med. 2016;22:115–34. https://doi.org/10.1016/j.molmed.2015.12.007.

    Article  PubMed  Google Scholar 

  8. Adhi M, Duker JS. Optical coherence tomography—current and future applications. Curr Opin Ophthalmol. 2013;24:213–21. https://doi.org/10.1097/ICU.0b013e32835f8bf8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stein-Streilein J. Mechanisms of immune privilege in the posterior eye. Int Rev Immunol. 2013;32:42–56. https://doi.org/10.3109/08830185.2012.740535.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou R, Caspi RR. Ocular immune privilege. F1000 Biol Rep. 2010;2:pii: 3. https://doi.org/10.3410/B2-3.

    Article  Google Scholar 

  11. Ramsden CM, Powner MB, Carr A-JF, et al. Stem cells in retinal regeneration: past, present and future. Development. 2013;140:2576–85. https://doi.org/10.1242/dev.092270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stanga PE, Kychenthal A, Fitzke FW, et al. Retinal pigment epithelium translocation after choroidal neovascular membrane removal in age-related macular degeneration. Ophthalmology. 2002;109:1492–8.

    Article  Google Scholar 

  13. Jha BS, Bharti K. Regenerating retinal pigment epithelial cells to cure blindness: a road towards personalized artificial tissue. Curr Stem Cell Reports. 2015;1:79–91. https://doi.org/10.1007/s40778-015-0014-4.

    Article  CAS  Google Scholar 

  14. Algvere PV, Berglin L, Gouras P, Sheng Y. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol. 1994;232:707–16.

    Article  CAS  Google Scholar 

  15. Del Priore LV, Kaplan HJ, Tezel TH, et al. Retinal pigment epithelial cell transplantation after subfoveal membranectomy in age-related macular degeneration: clinicopathologic correlation. Am J Ophthalmol. 2001;131:472–80.

    Article  Google Scholar 

  16. Peyman GA, Blinder KJ, Paris CL, et al. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg. 1991;22:102–8.

    CAS  PubMed  Google Scholar 

  17. Tezel TH, Del Priore LV, Berger AS, Kaplan HJ. Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol. 2007;143:584–95. https://doi.org/10.1016/j.ajo.2006.12.007.

    Article  PubMed  Google Scholar 

  18. Radtke ND, Aramant RB, Petry HM, et al. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol. 2008;146:172–82. https://doi.org/10.1016/j.ajo.2008.04.009.

    Article  PubMed  Google Scholar 

  19. Binder S, Stolba U, Krebs I, et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol. 2002;133:215–25. https://doi.org/10.1016/S0002-9394(01)01373-3.

    Article  PubMed  Google Scholar 

  20. da Cruz L, Chen FK, Ahmado A, et al. RPE transplantation and its role in retinal disease. Prog Retin Eye Res. 2007;26:598–635. https://doi.org/10.1016/j.preteyeres.2007.07.001.

    Article  CAS  PubMed  Google Scholar 

  21. Blenkinsop TA, Saini JS, Maminishkis A, et al. Human adult retinal pigment epithelial stem cell-derived RPE monolayers exhibit key physiological characteristics of native tissue. Investig Ophthalmol Vis Sci. 2015;56:7085–99. https://doi.org/10.1167/iovs.14-16246.

    Article  CAS  Google Scholar 

  22. Salero E, Blenkinsop TA, Corneo B, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 2012;10:88–95. https://doi.org/10.1016/j.stem.2011.11.018.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao C, Wang Q, Temple S. Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells. Development. 2017;144:1368–81. https://doi.org/10.1242/dev.133108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davis RJ, Blenkinsop TA, Campbell M, et al. Human RPE stem cell-derived RPE preserves photoreceptors in the Royal College of Surgeons rat: method for quantifying the area of photoreceptor sparing. J Ocul Pharmacol Ther. 2016;32:304–9. https://doi.org/10.1089/jop.2015.0162.

    Article  CAS  PubMed  Google Scholar 

  25. Skottman H. Derivation and characterization of three new human embryonic stem cell lines in Finland. In Vitro Cell Dev Biol Anim. 2010;46:206–9. https://doi.org/10.1007/s11626-010-9286-2.

    Article  PubMed  Google Scholar 

  26. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;107:861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  Google Scholar 

  27. Brandl C, Grassmann F, Riolfi J, Weber B. Tapping stem cells to target AMD: challenges and prospects. J Clin Med. 2015;4:282–303. https://doi.org/10.3390/jcm4020282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang K, Shen Y, Xue Z, et al. A panel of CpG methylation sites distinguishes human embryonic stem cells and induced pluripotent stem cells. Stem Cell Reports. 2014;2:36–43. https://doi.org/10.1016/j.stemcr.2013.11.003\rS2213-6711(13)00128-8. [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Chin MH, Mason MJ, Xie W, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009;5:111–23. https://doi.org/10.1016/j.stem.2009.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishino K, Toyoda M, Yamazaki-Inoue M, et al. DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet. 2011;7:7. https://doi.org/10.1371/journal.pgen.1002085.

    Article  CAS  Google Scholar 

  31. Polo JM, Liu S, Figueroa ME, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28:848–55. https://doi.org/10.1038/nbt.1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res. 2014;123:141–50. https://doi.org/10.1016/j.exer.2013.09.003.

    Article  CAS  Google Scholar 

  33. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6. https://doi.org/10.1038/nature09941.

    Article  CAS  PubMed  Google Scholar 

  34. Klimanskaya I, Hipp J, Rezai KA, et al. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6:217–45. https://doi.org/10.1089/clo.2004.6.217.

    Article  CAS  PubMed  Google Scholar 

  35. Buchholz DE, Hikita ST, Rowland TJ, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27:2427–34. https://doi.org/10.1002/stem.189.

    Article  CAS  PubMed  Google Scholar 

  36. Carr AJ, Vugler AA, Hikita ST, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4:4. https://doi.org/10.1371/journal.pone.0008152.

    Article  CAS  Google Scholar 

  37. Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 2009;458:126–31. https://doi.org/10.1016/j.neulet.2009.04.035.

    Article  CAS  PubMed  Google Scholar 

  38. Song MJ, Bharti K. Looking into the future: using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Res. 2016;1638:2–14. https://doi.org/10.1016/j.brainres.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

  39. Crocco MC, Fratnz N, Bos-Mikich A. Substrates and supplements for hESCs: a critical review. J Assist Reprod Genet. 2013;30:315–23. https://doi.org/10.1007/s10815-012-9914-8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Skottman H, Hovatta O. Culture conditions for human embryonic stem cells. Reproduction. 2006;132:691–8.

    Article  CAS  Google Scholar 

  41. Unger C, Skottman H, Blomberg P, et al. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet. 2008;17:R48–53. https://doi.org/10.1093/hmg/ddn079.

    Article  CAS  PubMed  Google Scholar 

  42. Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8:189–99. https://doi.org/10.1089/clo.2006.8.189.

    Article  CAS  PubMed  Google Scholar 

  43. Vugler A, Carr A-J, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214:347–61. https://doi.org/10.1016/j.expneurol.2008.09.007.

    Article  CAS  PubMed  Google Scholar 

  44. Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009;106:16698–703. https://doi.org/10.1073/pnas.0905245106.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, et al. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol Vis. 2011;17:558–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buchholz DE, Pennington BO, Croze RH, et al. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013;2:384–93. https://doi.org/10.5966/sctm.2012-0163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5:396–408. https://doi.org/10.1016/j.stem.2009.07.002.

    Article  CAS  PubMed  Google Scholar 

  48. Maruotti J, Sripathi SR, Bharti K, et al. Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci. 2015;112:10950–5. https://doi.org/10.1073/pnas.1422818112.

    Article  CAS  PubMed  Google Scholar 

  49. Rowland TJ, Blaschke AJ, Buchholz DE, et al. Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med. 2013;7:642–53. https://doi.org/10.1002/term.1458.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu D, Deng X, Spee C, et al. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes retinal progenitor cell survival. Investig Ophthalmol Vis Sci. 2011;52:1573–85. https://doi.org/10.1167/iovs.10-6413.

    Article  CAS  Google Scholar 

  51. Hongisto H, Ilmarinen T, Vattulainen M, et al. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther. 2017;8:291. https://doi.org/10.1186/s13287-017-0738-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sorkio A, Hongisto H, Kaarniranta K, et al. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating. Tissue Eng Part A. 2014;20:622–34. https://doi.org/10.1089/ten.TEA.2013.0049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abu Khamidakh AE, Dos Santos FC, Skottman H, et al. Semi-automatic method for Ca2+ imaging data analysis of maturing human embryonic stem cells-derived retinal pigment epithelium. Ann Biomed Eng. 2016;44:3408–20. https://doi.org/10.1007/s10439-016-1656-9.

    Article  PubMed  Google Scholar 

  54. Singh R, Phillips MJ, Kuai D, et al. Functional analysis of serially expanded human iPS cell-derived RPE cultures. Investig Ophthalmol Vis Sci. 2013;54:6767–78. https://doi.org/10.1167/iovs.13-11943.

    Article  CAS  Google Scholar 

  55. Croze RH, Thi WJ, Clegg DO. ROCK inhibition promotes attachment, proliferation, and wound closure in human embryonic stem cell-derived retinal pigmented epithelium. Transl Vis Sci Technol. 2016;5(6):7. https://doi.org/10.1167/tvst.5.6.7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Juuti-Uusitalo K, Delporte C, Gregoire F, et al. Aquaporin expression and function in human pluripotent stem cell-derived retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci. 2013;54:3510–9. https://doi.org/10.1167/iovs.13-11800.

    Article  PubMed  Google Scholar 

  57. Juuti-Uusitalo K, Nieminen M, Treumer F, et al. Effects of cytokine activation and oxidative stress on the function of the human embryonic stem cell-derived retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2015;56:6265–74. https://doi.org/10.1167/iovs.15-17333.

    Article  CAS  PubMed  Google Scholar 

  58. Choudhary P, Whiting PJ. A strategy to ensure safety of stem cell-derived retinal pigment epithelium cells. Stem Cell Res Ther. 2016;7:127. https://doi.org/10.1186/s13287-016-0380-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kanemura H, Go MJ, Shikamura M, et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One. 2014;9:1–11. https://doi.org/10.1371/journal.pone.0085336.

    Article  CAS  Google Scholar 

  60. Kawamata S, Kanemura H, Sakai N, et al. Design of a tumorigenicity test for induced pluripotent stem cell (iPSC)-derived cell products. J Clin Med. 2015;4:159–71. https://doi.org/10.3390/jcm4010159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuroda T, Yasuda S, Kusakawa S, et al. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. PLoS One. 2012;7:1–9. https://doi.org/10.1371/journal.pone.0037342.

    Article  CAS  Google Scholar 

  62. Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11:228–32. https://doi.org/10.1038/nm1181.

    Article  CAS  PubMed  Google Scholar 

  63. Sakamoto N, Tsuji K, Muul LM, et al. Bovine apolipoprotein B-100 is a dominant immunogen in therapeutic cell populations cultured in fetal calf serum in mice and humans. Blood. 2007;110:501–8. https://doi.org/10.1182/blood-2007-01-066522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carr A-J, Vugler A, Lawrence J, et al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis. 2009;15:283–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2014;2:205–18. https://doi.org/10.1016/j.stemcr.2013.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liao JL, Yu J, Huang K, et al. Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet. 2010;19:4229–38. https://doi.org/10.1093/hmg/ddq341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27:2126–35. https://doi.org/10.1002/stem.149.

    Article  CAS  PubMed  Google Scholar 

  68. Juuti-Uusitalo K, Vaajasaari H, Ryhänen T, et al. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells. PLoS One. 2012;7:e30089. https://doi.org/10.1371/journal.pone.0030089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kokkinaki M, Sahibzada N, Golestaneh N. Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells. 2011;29:825–35. https://doi.org/10.1002/stem.635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miyagishima KJ, Wan Q, Corneo B, et al. In pursuit of authenticity: induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl Med. 2016;5:1562–74. https://doi.org/10.5966/sctm.2016-0037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang YC, Chang WC, Hung KH, et al. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging Neurosci. 2014;6:191. https://doi.org/10.3389/fnagi.2014.00191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Juuti-Uusitalo K, Delporte C, Grégoire F, et al. Aquaporin expression and function in human pluripotent stem cell–derived retinal pigmented epithelial cells. Invest Opthalmol Vis Sci. 2013;54:3510. https://doi.org/10.1167/iovs.13-11800.

    Article  Google Scholar 

  73. Bharti K, Miller SS, Arnheiter H. The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res. 2011;24:21–34. https://doi.org/10.1111/j.1755-148X.2010.00772.x.

    Article  PubMed  Google Scholar 

  74. Bharti K, Rao M, Hull SC, et al. Developing cellular therapies for retinal degenerative diseases. Investig Ophthalmol Vis Sci. 2014;55:1191–201. https://doi.org/10.1167/iovs.13-13481.

    Article  Google Scholar 

  75. Yvon C, Ramsden CM, Lane A, et al. Using stem cells to model diseases of the outer retina. Comput Struct Biotechnol J. 2015;13:382–9. https://doi.org/10.1016/j.csbj.2015.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Al-Nawaiseh S, Thieltges F, Liu Z, et al. A step by step protocol for subretinal surgery in rabbits. J Vis Exp. 2016;(115):53927. https://doi.org/10.3791/53927.

  77. Brant Fernandes RA, Koss MJ, Falabella P, et al. An innovative surgical technique for subretinal transplantation of human embryonic stem cell-derived retinal pigmented epithelium in Yucatan mini pigs: preliminary results. Ophthalmic Surg Lasers Imaging Retina. 2016;47:342–51. https://doi.org/10.3928/23258160-20160324-07.

    Article  PubMed  Google Scholar 

  78. Stanzel BV, Liu Z, Brinken R, et al. Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation. Invest Ophthalmol Vis Sci. 2012;53:490–500. https://doi.org/10.1167/iovs.11-8260.

    Article  CAS  PubMed  Google Scholar 

  79. Thieltges F, Liu Z, Brinken R, et al. Localized RPE removal with a novel instrument aided by viscoelastics in rabbits. Transl Vis Sci Technol. 2016;5:11. https://doi.org/10.1167/tvst.5.3.11.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dowling JE, Sidman RL. Inherited retinal dystrophy in the rat. J Cell Biol. 1962;14:73–109.

    Article  CAS  Google Scholar 

  81. Edwards RB, Szamier RB. Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science. 1977;197:1001–3.

    Article  CAS  Google Scholar 

  82. Mullen RJ, LaVail MM. Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science. 1976;192:799–801.

    Article  CAS  Google Scholar 

  83. Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci. 2004;45:1020–5.

    Article  Google Scholar 

  84. Krohne TU, Westenskow PD, Kurihara T, et al. Generation of retinal pigment epithelial cells from small molecules and OCT4 reprogrammed human induced pluripotent stem cells. Stem Cells Transl Med. 2012;1:96–109. https://doi.org/10.5966/sctm.2011-0057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Diniz B, Thomas P, Thomas B, et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci. 2013;54:5087–96. https://doi.org/10.1167/iovs.12-11239.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kamao H, Mandai M, Ohashi W, et al. Evaluation of the surgical device and procedure for extracellular matrix–scaffold–supported human iPSC–derived retinal pigment epithelium cell sheet transplantation. Investig Opthalmol Vis Sci. 2017;58(1):211–20. https://doi.org/10.1167/iovs.16-19778.

    Article  Google Scholar 

  87. Shi G, Maminishkis A, Banzon T, et al. Control of chemokine gradients by the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2008;49:4620–30. https://doi.org/10.1167/iovs.08-1816.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Petrus-Reurer S, Bartuma H, Aronsson M, et al. Integration of subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells in a large-eyed model of geographic atrophy. Invest Ophthalmol Vis Sci. 2017;58(2):1314–22. https://doi.org/10.1167/iovs.16-20738doi.

    Article  CAS  PubMed  Google Scholar 

  89. Sugino IK, Gullapalli VK, Sun Q, et al. Cell-deposited matrix improves retinal pigment epithelium survival on aged submacular human Bruch’s membrane. Invest Ophthalmol Vis Sci. 2011;52:1345–58. https://doi.org/10.1167/iovs.10-6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sugino IK, Sun Q, Wang J, et al. Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch’s membrane. Invest Ophthalmol Vis Sci. 2011;52:4979–97. https://doi.org/10.1167/iovs.10-5386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tezel TH, Del Priore LV. Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol. 1997;235:41–7.

    Article  CAS  Google Scholar 

  92. Booij JC, Baas DC, Beisekeeva J, et al. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29:1–18. https://doi.org/10.1016/j.preteyeres.2009.08.003.

    Article  CAS  Google Scholar 

  93. Ramrattan RS, van der Schaft TL, Mooy CM, et al. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994;35:2857–64.

    CAS  PubMed  Google Scholar 

  94. Gullapalli VK, Sugino IK, Van Patten Y, et al. Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res. 2005;80:235–48. https://doi.org/10.1016/j.exer.2004.09.006.

    Article  CAS  PubMed  Google Scholar 

  95. Sugino IK, Rapista A, Sun Q, et al. A method to enhance cell survival on Bruch’s membrane in eyes affected by age and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52:9598–609. https://doi.org/10.1167/iovs.11-8400.

    Article  PubMed  Google Scholar 

  96. Binder S. Scaffolds for retinal pigment epithelium (RPE) replacement therapy. Br J Ophthalmol. 2011;95:441–2. https://doi.org/10.1136/bjo.2009.171926.

    Article  PubMed  Google Scholar 

  97. Hynes SR, Lavik EB. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol. 2010;248:763–78. https://doi.org/10.1007/s00417-009-1263-7.

    Article  PubMed  Google Scholar 

  98. Pennington BO, Clegg DO. Pluripotent stem cell-based therapies in combination with substrate for the treatment of age-related macular degeneration. J Ocul Pharmacol Ther. 2016;32:261–71. https://doi.org/10.1089/jop.2015.0153.

    Article  CAS  PubMed  Google Scholar 

  99. Sorkio A, Haimi S, Verdoold V, et al. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells. J Tissue Eng Regen Med. 2017;11:3134–44. https://doi.org/10.1002/term.2221.

    Article  CAS  PubMed  Google Scholar 

  100. Akrami H, Soheili Z-S, Sadeghizadeh M, et al. Evaluation of RPE65, CRALBP, VEGF, CD68, and tyrosinase gene expression in human retinal pigment epithelial cells cultured on amniotic membrane. Biochem Genet. 2011;49:313–22. https://doi.org/10.1007/s10528-010-9409-1.

    Article  CAS  PubMed  Google Scholar 

  101. Kiilgaard JF, Scherfig E, Prause JU, la Cour M. Transplantation of amniotic membrane to the subretinal space in pigs. Stem Cells Int. 2012;2012:716968–5. https://doi.org/10.1155/2012/716968.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nicolini J, Kiilgaard JF, Wiencke AK, et al. The anterior lens capsule used as support material in RPE cell-transplantation. Acta Ophthalmol Scand. 2000;78:527–31.

    Article  CAS  Google Scholar 

  103. Walters NJ, Gentleman E. Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater. 2015;11:3–16. https://doi.org/10.1016/j.actbio.2014.09.038.

    Article  CAS  PubMed  Google Scholar 

  104. Rahmany MB, Van Dyke M. Biomimetic approaches to modulate cellular adhesion in biomaterials: a review. Acta Biomater. 2013;9:5431–7. https://doi.org/10.1016/j.actbio.2012.11.019.

    Article  CAS  PubMed  Google Scholar 

  105. Lee J, Tae G, Kim YH, et al. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials. 2008;29:1872–9. https://doi.org/10.1016/j.biomaterials.2007.12.029.

    Article  CAS  PubMed  Google Scholar 

  106. Sorkio A, Porter PJ, Juuti-Uusitalo K, et al. Surface modified biodegradable electrospun membranes as a carrier for human embryonic stem cell-derived retinal pigment epithelial cells. Tissue Eng Part A. 2015;21:2301–14. https://doi.org/10.1089/ten.tea.2014.0640.

    Article  CAS  PubMed  Google Scholar 

  107. Calejo MT, Ilmarinen T, Jongprasitkul H, et al. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium. J Biomed Mater Res A. 2016;104:1646–56. https://doi.org/10.1002/jbm.a.35690.

    Article  CAS  PubMed  Google Scholar 

  108. Ilmarinen T, Hiidenmaa H, Kööbi P, et al. Ultrathin polyimide membrane as cell carrier for subretinal transplantation of human embryonic stem cell derived retinal pigment epithelium. PLoS One. 2015;10:e0143669. https://doi.org/10.1371/journal.pone.0143669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sorkio AE, Vuorimaa-Laukkanen EP, Hakola HM, et al. Biomimetic collagen I and IV double layer Langmuir–Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells. Biomaterials. 2015;51:257–69. https://doi.org/10.1016/j.biomaterials.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  110. Wang C, Stewart RJ, Kopecek J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature. 1999;397:417–20. https://doi.org/10.1038/17092.

    Article  CAS  PubMed  Google Scholar 

  111. Warnke PH, Alamein M, Skabo S, et al. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 2013;9:9414–22. https://doi.org/10.1016/j.actbio.2013.07.029.

    Article  CAS  PubMed  Google Scholar 

  112. Xiang P, Wu K-C, Zhu Y, et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials. 2014;35:9777–88. https://doi.org/10.1016/j.biomaterials.2014.08.040.

    Article  CAS  PubMed  Google Scholar 

  113. Stanzel BV, Liu Z, Somboonthanakij S, et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Reports. 2014;2:64–77. https://doi.org/10.1016/j.stemcr.2013.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Koss MJ, Falabella P, Stefanini FR, et al. Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatan minipigs. Graefes Arch Clin Exp Ophthalmol. 2016;254:1553–65. https://doi.org/10.1007/s00417-016-3386-y.

    Article  CAS  PubMed  Google Scholar 

  115. Subrizi A, Hiidenmaa H, Ilmarinen T, et al. Generation of hESC-derived retinal pigment epithelium on biopolymer coated polyimide membranes. Biomaterials. 2012;33:8047–54. https://doi.org/10.1016/j.biomaterials.2012.07.033.

    Article  CAS  PubMed  Google Scholar 

  116. Schwartz SD, Hubschman J-P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20. https://doi.org/10.1016/S0140-6736(12)60028-2.

    Article  CAS  PubMed  Google Scholar 

  117. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16. https://doi.org/10.1016/S0140-6736(14)61376-3.

    Article  PubMed  Google Scholar 

  118. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46. https://doi.org/10.1056/NEJMoa1608368.

    Article  CAS  PubMed  Google Scholar 

  119. Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33:890–1. https://doi.org/10.1038/nbt0915-890.

    Article  CAS  PubMed  Google Scholar 

  120. Coffey P. Human embryonic stem cell derived retinal pigment epithelium transplantation in severe exudative age related macular degeneration: so far so visual. In: Annual ARVO 2017 meeting, Baltimore USA; 2017.

    Google Scholar 

  121. da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36:328–37. https://doi.org/10.1038/nbt.4114.

    Article  CAS  PubMed  Google Scholar 

  122. Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10:eaao4097. https://doi.org/10.1126/scitranslmed.aao4097.

    Article  CAS  PubMed  Google Scholar 

  123. Doi A, Park I-H, Wen B, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41:1350–3. https://doi.org/10.1038/ng.471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Howden SE, Gore A, Li Z, et al. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci U S A. 2011;108:6537–42. https://doi.org/10.1073/pnas.1103388108.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sugita S, Iwasaki Y, Makabe K, et al. Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Reports. 2016;7:619–34. https://doi.org/10.1016/j.stemcr.2016.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sugita S, Iwasaki Y, Makabe K, et al. Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Reports. 2016;7:635–48. https://doi.org/10.1016/j.stemcr.2016.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gornalusse GG, Hirata RK, Funk SE, et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol. 2017;35:765–72. https://doi.org/10.1038/nbt.3860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29:1206–18. https://doi.org/10.1002/stem.674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Singh MS, Balmer J, Barnard AR, et al. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun. 2016;7:13537. https://doi.org/10.1038/ncomms13537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marks PW, Witten CM, Califf RM. Clarifying stem-cell therapy’s benefits and risks. N Engl J Med. 2017;376:1007–9. https://doi.org/10.1056/NEJMp1613723.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Heidi Hongisto, Tanja Ilmarinen and Outi Paloheimo are acknowledged for the artwork of Figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heli Skottman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skottman, H. (2020). RPE and Stem Cell Therapy. In: Klettner, A., Dithmar, S. (eds) Retinal Pigment Epithelium in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28384-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28384-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28383-4

  • Online ISBN: 978-3-030-28384-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics