Skip to main content

Torsion Invariants

  • Chapter
  • First Online:
Introduction to ℓ²-invariants

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2247))

  • 930 Accesses

Abstract

We explain how 2-torsion arises as the 2-counterpart to Reidemeister torsion and give an intuitive picture on how to think about chain complexes in this context. We extract some explicit computations of 2-torsion for spaces and groups from the literature and we present how twisting the 2-chain complex with a character leads to the definition of 2-Alexander torsion. As we will see, the degree of the 2-Alexander torsion function recovers the Thurston norm for 3-manifolds. Next we give full details how 2-torsion relates to torsion in homology via regulators. As a consequence, we show how the torsion approximation conjecture actually splits up into three different problems, each of it intriguing and wide open. Specializing to an arithmetic setting, we present the Bergeron Venkatesh conjecture on torsion in twisted homology. We conclude the text with an account on profinite rigidity, (non-)profiniteness of 2-Betti numbers and a proof that the torsion approximation conjecture implies profiniteness of volume for 3-manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abért, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, I. Samet, On the growth of L 2-invariants for sequences of lattices in Lie groups. Ann. Math. (2) 185(3), 711–790 (2017). MR 3664810

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Agol, Criteria for virtual fibering. J. Topol. 1(2), 269–284 (2008). MR 2399130

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Agol, The virtual Haken conjecture. Doc. Math. 18, 1045–1087 (2013). With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553

    Google Scholar 

  4. M. Aka, Profinite completions and Kazhdan’s property (T). Groups Geom. Dyn. 6(2), 221–229 (2012). MR 2914858

    Google Scholar 

  5. R.C. Alperin, An elementary account of Selberg’s lemma. Enseign. Math. (2) 33(3–4), 269–273 (1987). MR 925989

    Google Scholar 

  6. M. Aschenbrenner, S. Friedl, H. Wilton, 3-Manifold Groups. EMS Series of Lectures in Mathematics (European Mathematical Society, Zürich, 2015). MR 3444187

    Google Scholar 

  7. H. Bass, J. Milnor, J.-P Serre, Solution of the congruence subgroup problem for SLn(n ≥ 3) and Sp2n(n ≥ 2). Inst. Hautes Études Sci. Publ. Math. 33, 59–137 (1967). MR 0244257

    Google Scholar 

  8. F. Ben Aribi, The L 2-Alexander invariant detects the unknot. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15, 683–708 (2016). MR 3495444

    Google Scholar 

  9. N. Bergeron, Torsion homology growth in arithmetic groups, in European Congress of Mathematics (Eur. Math. Soc., Zürich, 2018), pp. 263–287. MR 3887771

    Google Scholar 

  10. N. Bergeron, A. Venkatesh, The asymptotic growth of torsion homology for arithmetic groups. J. Inst. Math. Jussieu 12(2), 391–447 (2013). MR 3028790

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Borel, The L 2-cohomology of negatively curved Riemannian symmetric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 95–105 (1985). MR 802471

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Borel, J.-P. Serre, Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973). Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault. MR 0387495

    Google Scholar 

  13. M. Borinsky, K. Vogtmann, The Euler characteristic of Out(F n). https://arxiv.org/abs/1907.03543

  14. M.R. Bridson, A.W. Reid, Profinite rigidity, fibering, and the figure-eight knot (2015). arXiv:1505.07886

    Google Scholar 

  15. M.R. Bridson, M.D.E. Conder, A.W. Reid, Determining Fuchsian groups by their finite quotients. Israel J. Math. 214(1), 1–41 (2016). MR 3540604

    Article  MathSciNet  MATH  Google Scholar 

  16. E.J. Brody, The topological classification of the lens spaces. Ann. Math. (2) 71, 163–184 (1960). MR 0116336

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Clay, 2-torsion of free-by-cyclic groups. Q. J. Math. 68(2), 617–634 (2017). MR 3667215

    Google Scholar 

  18. D. Crowley, W. Lück, T. Macko, Surgery Theory: Foundations (to appear). http://www.mat.savba.sk/~macko/

  19. J. Dubois, C. Wegner, Weighted L 2-invariants and applications to knot theory. Commun. Contemp. Math. 17(1), 1450010 (2015). MR 3291974

    Article  MATH  Google Scholar 

  20. J. Dubois, S. Friedl, W. Lück, The L 2-Alexander torsion is symmetric. Algebr. Geom. Topol. 15(6), 3599–3612 (2015). MR 3450772

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Dubois, S. Friedl, W. Lück, The L 2-Alexander torsion of 3-manifolds. J. Topol. 9(3), 889–926 (2016). MR 3551842

    Article  MathSciNet  MATH  Google Scholar 

  22. R.H. Fox, A quick trip through knot theory, in Topology of 3-Manifolds and Related Topics: Proceedings of The University of Georgia Institute, 1961 (Prentice-Hall, Englewood Cliffs, 1962), pp. 120–167. MR 0140099

    Google Scholar 

  23. S. Friedl, T. Kim, The Thurston norm, fibered manifolds and twisted Alexander polynomials. Topology 45(6), 929–953 (2006). MR 2263219

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Friedl, T. Kitayama, The virtual fibering theorem for 3-manifolds. Enseign. Math. 60(1–2), 79–107 (2014). MR 3262436

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Friedl, W. Lück, The L 2-torsion function and the Thurston norm of 3-manifolds (2015). arXiv:1510.00264

    Google Scholar 

  26. S. Friedl, W. Lück, Universal L 2-torsion, polytopes and applications to 3-manifolds. Proc. Lond. Math. Soc. (3) 114(6), 1114–1151 (2017). MR 3661347

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Friedl, A. Juhász, J. Rasmussen, The decategorification of sutured Floer homology. J. Topol. 4(2), 431–478 (2011). MR 2805998

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Funar, Torus bundles not distinguished by TQFT invariants. Geom. Topol. 17(4), 2289–2344 (2013). With an appendix by Funar and Andrei Rapinchuk. MR 3109869

    Google Scholar 

  29. D. Gaboriau, On the top-dimensional -Betti numbers. https://arxiv.org/abs/1909.01633

  30. Ł. Grabowski, Group ring elements with large spectral density. Math. Ann. 363(1–2), 637–656 (2015). MR 3394391

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Gromov, Large Riemannian manifolds, in Curvature and Topology of Riemannian Manifolds (Katata, 1985). Lecture Notes in Mathematics, vol. 1201 (Springer, Berlin, 1986), pp. 108–121. MR 859578

    Chapter  Google Scholar 

  32. J. Hempel, 3-Manifolds. Annals of Mathematics Studies, No. 86 (Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1976). MR 0415619

    Google Scholar 

  33. J. Hempel, Residual finiteness for 3-manifolds, in Combinatorial Group Theory and Topology (Alta, UT, 1984). Annals of Mathematics Studies, vol. 111 (Princeton University Press, Princeton, 1987), pp. 379–396. MR 895623

    Chapter  Google Scholar 

  34. J. Hempel, Some 3-manifold groups with the same finite quotients (2014). arXiv:1409.3509

    Google Scholar 

  35. G. Herrmann, The L 2-Alexander torsion for Seifert fiber spaces. Arch. Math. (Basel) 109(3), 273–283 (2017). MR 3687871

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Hess, T. Schick, L 2-torsion of hyperbolic manifolds. Manuscripta Math. 97(3), 329–334 (1998). MR 1654784

    Google Scholar 

  37. H. Kammeyer, L 2-invariants of nonuniform lattices in semisimple Lie groups. Algebr. Geom. Topol. 14(4), 2475–2509 (2014). MR 3331619

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Kammeyer, The shrinkage type of knots. Bull. Lond. Math. Soc. 49(3), 428–442 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Kammeyer, A remark on torsion growth in homology and volume of 3-manifolds (2018). arXiv:1802.09244

    Google Scholar 

  40. H. Kammeyer, Profinite commensurability of S-arithmetic groups (2018). arXiv:1802.08559

    Google Scholar 

  41. H. Kammeyer, R. Sauer, S-arithmetic spinor groups with the same finite quotients and distinct 2-cohomology (2018). arXiv:1804.10604

    Google Scholar 

  42. H. Kammeyer, S. Kionke, J. Raimbault, R. Sauer, Profinite invariants of arithmetic groups (2019). arXiv:1901.01227

    Google Scholar 

  43. S. Kionke, Lefschetz numbers of symplectic involutions on arithmetic groups. Pacific J. Math. 271(2), 369–414 (2014). MR 3267534

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Kreck, W. Lück, Topological rigidity for non-aspherical manifolds. Pure Appl. Math. Q. 5(3), 873–914 (2009). Special Issue: In honor of Friedrich Hirzebruch. MR 2532709

    Google Scholar 

  45. W. Li, W. Zhang, An L 2-Alexander invariant for knots. Commun. Contemp. Math. 8(2), 167–187 (2006). MR 2219611

    Article  MATH  Google Scholar 

  46. Y. Liu, Degree of L 2-Alexander torsion for 3-manifolds. Invent. Math. 207(3), 981–1030 (2017). MR 3608287

    Google Scholar 

  47. J. Lott, Heat kernels on covering spaces and topological invariants. J. Differ. Geom. 35(2), 471–510 (1992). MR 1158345

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Lott, The zero-in-the-spectrum question. Enseign. Math. (2) 42(3–4), 341–376 (1996). MR 1426443

    Google Scholar 

  49. J. Lott, W. Lück, L 2-topological invariants of 3-manifolds. Invent. Math. 120(1), 15–60 (1995). MR 1323981

    Google Scholar 

  50. W. Lück, Survey on classifying spaces for families of subgroups, in Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Progress in Mathematics, vol. 248 (Birkhäuser, Basel, 2005), pp. 269–322. MR 2195456

    Google Scholar 

  51. W. Lück, Twisting L 2-invariants with finite-dimensional representation (2015). arXiv:1510.00057

    Google Scholar 

  52. W. Lück, Approximating L 2-invariants by their classical counterparts. EMS Surv. Math. Sci. 3(2), 269–344 (2016). MR 3576534

    Google Scholar 

  53. W. Lück, T. Schick, L 2-torsion of hyperbolic manifolds of finite volume. Geom. Funct. Anal. 9(3), 518–567 (1999). MR 1708444

    Google Scholar 

  54. W. Lück, R. Sauer, C. Wegner, L 2-torsion, the measure-theoretic determinant conjecture, and uniform measure equivalence. J. Topol. Anal. 2(2), 145–171 (2010). MR 2652905

    Article  MATH  Google Scholar 

  55. G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17 (Springer, Berlin, 1991). MR 1090825

    Google Scholar 

  56. S. Marshall, W. Müller, On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds. Duke Math. J. 162(5), 863–888 (2013). MR 3047468

    Article  MathSciNet  MATH  Google Scholar 

  57. G.D. Mostow, Strong Rigidity of Locally Symmetric Spaces. Annals of Mathematics Studies, No. 78 (Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1973). MR 0385004

    Google Scholar 

  58. W. Müller, Analytic torsion and R-torsion for unimodular representations. J. Am. Math. Soc. 6(3), 721–753 (1993). MR 1189689

    Google Scholar 

  59. W. Müller, J. Pfaff, Analytic torsion of complete hyperbolic manifolds of finite volume. J. Funct. Anal. 263(9), 2615–2675 (2012). MR 2967302

    Article  MathSciNet  MATH  Google Scholar 

  60. W. Müller, J. Pfaff, On the growth of torsion in the cohomology of arithmetic groups. Math. Ann. 359(1–2), 537–555 (2014). MR 3201905

    Article  MathSciNet  MATH  Google Scholar 

  61. W. Müller, J. Pfaff, The analytic torsion and its asymptotic behaviour for sequences of hyperbolic manifolds of finite volume. J. Funct. Anal. 267(8), 2731–2786 (2014). MR 3255473

    Article  MathSciNet  MATH  Google Scholar 

  62. N. Nikolov, Algebraic properties of profinite groups (2011). arXiv:1108.5130

    Google Scholar 

  63. N. Nikolov, D. Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds. Ann. Math. (2) 165(1), 171–238 (2007). MR 2276769

    Article  MathSciNet  MATH  Google Scholar 

  64. M. Olbrich, L 2-invariants of locally symmetric spaces. Doc. Math. 7, 219–237 (2002). MR 1938121

    Google Scholar 

  65. V. Platonov, A. Rapinchuk, Algebraic Groups and Number Theory. Pure and Applied Mathematics, vol. 139 (Academic, Boston, 1994). Translated from the 1991 Russian original by Rachel Rowen. MR 1278263

    Chapter  MATH  Google Scholar 

  66. G. Prasad, A.S. Rapinchuk, Developments on the congruence subgroup problem after the work of Bass, Milnor and Serre (2008). arXiv:0809.1622

    Google Scholar 

  67. P. Przytycki, D.T. Wise, Mixed 3-manifolds are virtually special. J. Am. Math. Soc. 31(2), 319–347 (2018). MR 3758147

    Google Scholar 

  68. A.A. Ranicki, Notes on Reidemeister Torsion. Department of Mathematics and Statistics University of Edinburgh. http://www.maths.ed.ac.uk/~aar/papers/torsion.pdf

  69. A.W. Reid, Profinite properties of discrete groups, in Groups St. Andrews 2013. London Mathematics Society. Lecture Note Series, vol. 422 (Cambridge University Press, Cambridge, 2015), pp. 73–104. MR 3445488

    Google Scholar 

  70. L. Ribes, P. Zalesskii, Profinite Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 40 (Springer, Berlin, 2000). MR 1775104

    Google Scholar 

  71. P. Scholze, On torsion in the cohomology of locally symmetric varieties. Ann. Math. (2) 182(3), 945–1066 (2015). MR 3418533

    Google Scholar 

  72. M.H. Şengün, On the integral cohomology of Bianchi groups. Exp. Math. 20(4), 487–505 (2011). MR 2859903

    Article  MathSciNet  MATH  Google Scholar 

  73. M.H. Şengün, On the torsion homology of non-arithmetic hyperbolic tetrahedral groups. Int. J. Number Theory 8(2), 311–320 (2012). MR 2890481

    Article  MathSciNet  MATH  Google Scholar 

  74. W. Thurston, The Geometry and Topology of 3-Manifolds. Lecture Notes (1980). http://library.msri.org/books/gt3m/

  75. W. Thurston, A norm for the homology of 3-manifolds. Mem. Am. Math. Soc. 59(339), i–vi and 99–130 (1986). MR 823443

    Google Scholar 

  76. K. Vogtmann, Automorphisms of free groups and outer space, in Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), 2002, pp. 1–31. MR 1950871

    Google Scholar 

  77. H.C. Wang, Topics on totally discontinuous groups, in Symmetric Spaces (Short Courses, Washington University, St. Louis, 1969–1970). Pure and Applied Mathematics, vol. 8 (Dekker, New York, 1972), pp. 459–487. MR 0414787

    Google Scholar 

  78. G. Wilkes, Profinite rigidity for Seifert fibre spaces. Geom. Dedicata 188, 141–163 (2017). MR 3639628

    Article  MathSciNet  MATH  Google Scholar 

  79. D.T. Wise, The structure of groups with a quasiconvex hierarchy (2012). https://drive.google.com/file/d/0B45cNx80t5-2T0twUDFxVXRnQnc/view

  80. D. Witte Morris, Introduction to Arithmetic Groups (Deductive Press, Public Domain, 2015). MR 3307755

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kammeyer, H. (2019). Torsion Invariants. In: Introduction to ℓ²-invariants. Lecture Notes in Mathematics, vol 2247. Springer, Cham. https://doi.org/10.1007/978-3-030-28297-4_6

Download citation

Publish with us

Policies and ethics