Skip to main content

Multi-robot Path Planning for Complete Coverage with Genetic Algorithms

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11744))

Included in the following conference series:

Abstract

Complete coverage path planning (CPP) generates a path following which a robot can cover all free spaces in an environment. Compared with single robot CPP, multi-robot CPP gains both efficiency and challenges. In large scale environments, one robot is not competent to the coverage task, such as doing cleaning work in airports, supermarkets, shopping malls, etc. The proposed approach firstly creates a global map with a simultaneous localization and mapping (SLAM) method, and partitions the map into a set of small sub-regions according to the environment’s topological structure. Then the multi-robot CPP formed a multiple traveling salesman (mTSP) problem, where a genetic algorithm (GA) allocates the sub-regions to each robot and gives the robots their visiting orders to the sub-regions. This paper mainly focuses on how to model the multi-robot CPP problem with mTSP and how to solve the task allocation problem with an improved GA algorithm off-line. Two SLAM-based environmental experiments validated the proposed method’s feasibility and efficiency in terms of time consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choset, H.: Coverage of known spaces: the boustrophedon cellular decomposition. Auton. Robot. 9(3), 247–253 (2000)

    Article  Google Scholar 

  2. Acar, E.U., Choset, H.: Sensor-based coverage of unknown environments: incremental construction of morse decompositions. Int. J. Robot. Res. 21(4), 345–366 (2002)

    Article  Google Scholar 

  3. Zelinsky, A., Jarvis, R.A., Byrne, J.C.: Planning paths of complete coverage of an unstructured environment by a mobile robot. In: Proceedings of International Conference on Advanced Robotics, pp. 533–538 (1993)

    Google Scholar 

  4. Gabriely, Y., Rimon, E.: Spiral-STC: an on-line coverage algorithm of grid environments by a mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 954–960 (2002)

    Google Scholar 

  5. Luo, C., Yang, S.X.: A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Trans. Neural Netw. 19(7), 1279–1298 (2008)

    Article  Google Scholar 

  6. Bircher, A., et al.: Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots. Auton. Robot. 40(6), 1059–1078 (2016)

    Article  Google Scholar 

  7. Janchiv, A., Batsaikhan, D., Kim, G.H., et al.: Complete coverage path planning for multi-robots based on. In: Proceedings of International Conference on Control, Automation and Systems pp. 824–827 (2011)

    Google Scholar 

  8. Rekleitis, I., Ai, P.N., Rankin, E.S., et al.: Efficient boustrophedon multi-robot coverage: an algorithmic approach. Ann. Math. Artif. Intell. 52(2–4), 109–142 (2008)

    Article  MathSciNet  Google Scholar 

  9. Hazon, N., Kaminka, G.A.: Redundancy, efficiency and robustness in multi-robot coverage. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 735–741 (2005)

    Google Scholar 

  10. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)

    Article  Google Scholar 

  11. Viet, H.H., Dang, V.H., Laskar, M.N.U., et al.: BA*: an online complete coverage algorithm for cleaning robots. Appl. Intell. 39(2), 217–235 (2013)

    Article  Google Scholar 

  12. Viet, H.H., Dang, V.H., Choi, S.Y., et al.: BoB: an online coverage approach for multi-robot systems. Appl. Intell. 42(2), 157–173 (2015)

    Article  Google Scholar 

  13. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23, 34–46 (2007)

    Article  Google Scholar 

  14. Kohlbrecher, S., Stryk, O.V., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with Full 3D motion estimation. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics, pp. 155–160 (2011)

    Google Scholar 

  15. Koch, P., et al.: Multi-robot localization and mapping based on signed distance functions. J. Intell. Robot. Syst. 82(3–4), 409–428 (2016)

    Article  Google Scholar 

  16. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR SLAM. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1271–1278 (2016)

    Google Scholar 

  17. Zhou, Y., Yu, S., Sun, R., et al.: Topological segmentation for indoor environments from grid maps using an improved NJW algorithm. In: Proceedings of IEEE International Conference on Information and Automation, pp. 142–147 (2017)

    Google Scholar 

  18. Longueville, M.D.: A Course in Topological Combinatorics. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-7910-0

    Book  MATH  Google Scholar 

  19. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 52(1), 7–21 (2005)

    Article  Google Scholar 

  20. Lattarulo, V., Parks, G.T.: A preliminary study of a new multi-objective optimization algorithm. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

    Google Scholar 

  21. Xu, Z., Wen, Q.: Approximation hardness of min-max tree covers. Oper. Res. Lett. 38(3), 169–173 (2010)

    Article  MathSciNet  Google Scholar 

  22. Sarin, S.C., Sherali, H.D., Bhootra, A.: New tighter polynomial length formulations for the asymmetric traveling salesman problem with and without precedence constraints. Oper. Res. Lett. 33(1), 62–70 (2005)

    Article  MathSciNet  Google Scholar 

  23. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2009)

    Article  Google Scholar 

  24. Koubaa, A., et al.: Move and improve: a market-based mechanism for the multiple depot multiple travelling salesmen problem. J. Intell. Robot. Syst. 85(2), 307–330 (2017)

    Article  Google Scholar 

  25. Reeves, C.R., Rowe, J.E.: Genetic Algorithms-Principles and Perspectives: A Guide to GA Theory. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  26. Croes, G.A.: A method for solving traveling salesman problems. Oper. Res. 6(6), 791–812 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumei Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, R., Tang, C., Zheng, J., Zhou, Y., Yu, S. (2019). Multi-robot Path Planning for Complete Coverage with Genetic Algorithms. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11744. Springer, Cham. https://doi.org/10.1007/978-3-030-27541-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27541-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27540-2

  • Online ISBN: 978-3-030-27541-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics