Skip to main content

Visual Servoing of Soft Robotic Arms by Binocular

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11742))

Included in the following conference series:

  • 3254 Accesses

Abstract

Soft robotic arms are complementing traditional rigid arms in many fields due to its multiple degrees of freedom, safety and adaptability to the environment. In recent years, soft robotic arms have become the focus in robotics research and gained increasing attention from scientists and engineers. Despite the rapid progress of its design and manufacturing processes in the past decade, an obstacle restricting the development of soft robotic arms remained unsolved. The suitable sensors for soft robotic arm have not appeared on the market and the integration of sensors into soft robotic arm has been difficult, since most sensors and actuator systems, such as those used in traditional robotic arms, are rigid sensors and rather simple. Therefore, finding a suitable soft robotic arm sensor has become an urgent issue in this field. In this paper, a simple and feasible method with a binocular camera is proposed to control the soft robotic arm. Binocular is employed to detect the spatial target position at first and then coordinates of target point will be transmitted to the soft robot to generate a control signal moving the soft robotic arm, and then the distance from target to the end effector will be measured in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, J., Chen, X., Chang, U., Pan, J., Wang, W., Wang, Z.: Intuitive control of humanoid soft-robotic hand BCL-13. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 314–319 (2018)

    Google Scholar 

  2. Chen, X., Hu, T., Song, C., Wang, Z.: Analytical solution to global dynamic balance control of the Acrobot. In: 2018 IEEE International Conference on Real-time Computing and Robotics, pp. 405–410 (2019)

    Google Scholar 

  3. Chen, X., Yi, J., Li, J., Zhou, J., Wang, Z.: Soft-actuator-based robotic joint for safe and forceful interaction with controllable impact response. IEEE Robot. Autom. Lett. 3(4), 3505–3512 (2018)

    Article  Google Scholar 

  4. Polygerinos, P., et al.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 31(3), 778–789 (2015)

    Article  Google Scholar 

  5. Wang, Z., Peer, A., Buss, M.: Fast online impedance estimation for robot control. In: IEEE 2009 International Conference on Mechatronics, ICM 2009, pp. 1–6 (2009)

    Google Scholar 

  6. Yi, J., et al.: Customizable three-dimensional-printed origami soft robotic joint with effective behavior shaping for safe interactions. IEEE Trans. Robot. (2018, accepted)

    Google Scholar 

  7. Zhou, J., Chen, X., Li, J., Tian, Y., Wang, Z.: A soft robotic approach to robust and dexterous grasping. In: 2018 IEEE International Conference on Soft Robotics, RoboSoft 2018, no. 200, pp. 412–417 (2018)

    Google Scholar 

  8. Wang, Z., Peer, A., Buss, M.: An HMM approach to realistic haptic human-robot interaction. In: Proceedings - 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces Virtual Environment Teleoperator Systems World Haptics 2009, pp. 374–379 (2009)

    Google Scholar 

  9. Wang, Z., Sun, Z., Phee, S.J.: Haptic feedback and control of a flexible surgical endoscopic robot. Comput. Methods Programs Biomed. 112(2), 260–271 (2013)

    Article  Google Scholar 

  10. Wang, Z., Polygerinos, P., Overvelde, J.T.B., Galloway, K.C., Bertoldi, K., Walsh, C.J.: Interaction forces of soft fiber reinforced bending actuators. IEEE/ASME Trans. Mechatron. 22(2), 717–727 (2017)

    Article  Google Scholar 

  11. Viry, L., et al.: Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv. Mater. 26, 2659–2664 (2014). https://doi.org/10.1002/adma.201305064

    Article  Google Scholar 

  12. Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., Schwödiauer, R.: 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2014). https://doi.org/10.1002/adma.201303349

    Article  Google Scholar 

  13. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. Int. Ed. 50, 1890–1895 (2011). https://doi.org/10.1002/anie.201006464b

    Article  Google Scholar 

  14. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)

    Article  Google Scholar 

  15. Yi, J., Chen, X., Song, C., Wang, Z.: Fiber-reinforced origamic robotic actuator. Soft Robot. 5(1), 81–92 (2017)

    Article  Google Scholar 

  16. Wilson, W.J., Hulls, C.W., Bell, G.S.: Relative end-effector control using Cartesian position based visual servoing. IEEE Trans. Robot. Autom. 12(5), 684–696 (1996)

    Article  Google Scholar 

  17. Allen, P.K., Yoshimi, B., Timcenko, A.: Real-time visual servoing. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, vol. 1, pp. 851–856 (1991)

    Google Scholar 

  18. Jagersand, M., Fuentes, O., Nelson, R.: Experimental evaluation of uncalibrated visual servoing for precision manipulation. In: Proceedings of International Conference on Robotics and Automation, Albuquerque, NM, USA, vol. 4, pp. 2874–2880 (1997)

    Google Scholar 

  19. Vahrenkamp, N., Wieland, S., Azad, P., Gonzalez, D., Asfour, T., Dillmann, R.: Visual servoing for humanoid grasping and manipulation tasks. In: Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, pp. 406–412 (2008)

    Google Scholar 

  20. De Luca, A., Oriolo, G., Robuffo Giordano, P.: Feature depth observation for image-based visual servoing: theory and experiments. Int. J. Robot. Res. 27(10), 1093–1116 (2008). https://doi.org/10.1177/0278364908096706

    Article  Google Scholar 

  21. Malis, E.: Visual servoing invariant to changes in camera-intrinsic parameters. IEEE Trans. Robot. Autom. 20(1), 72–81 (2004)

    Article  Google Scholar 

  22. De Luca, A., Oriolo, G., Giordano, P.R.: On-line estimation of feature depth for image-based visual servoing schemes. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, pp. 2823–2828 (2007)

    Google Scholar 

  23. Fujimoto, H.: Visual servoing of 6 DOF manipulator by multirate control with depth identification. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Maui, HI, vol. 5, pp. 5408–5413 (2003)

    Google Scholar 

  24. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  25. Zhang, Z.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27(2), 161–195 (1998)

    Article  Google Scholar 

  26. Davison, A.: Real-time simultaneous localization and mapping with a single camera. In: Proceedings of International Conference Computer Vision, pp. 1403–1410, October 2003

    Google Scholar 

  27. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 270–279 (2017)

    Google Scholar 

  28. Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep learning for monocular depth map prediction. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6647–6655 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, L., Chen, X., Wang, Z. (2019). Visual Servoing of Soft Robotic Arms by Binocular. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27535-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27534-1

  • Online ISBN: 978-3-030-27535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics