Skip to main content

Introduction to the Morphology, Development, and Ecology of Feathers

  • Chapter
  • First Online:
The Evolution of Feathers

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Feathers are a characteristic of modern birds that differentiate them from all other extant non-avian reptiles. The origin of feathers goes back deep into the Mesozoic, preceding the origin of flight, and early protofeathers were probably present in the ancestral Tetanurae, Dinosauria, or even Ornithodira. Among extant vertebrates, the feathers of modern birds are morphologically the most complex integumentary structure with enormous shape diversity resulting from a hierarchical organization of repetitive morphological and developmental modules. In this chapter, the morphological ground patterns of modern feathers, their underlying developmental processes, and the biological roles of different feather types are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aparicio JM, Bonal R, Cordero PJ (2003) Evolution of the structure of tail feathers: implications for the theory of sexual selection. Evolution 57:397–405

    Article  PubMed  Google Scholar 

  • Bachmann T, Klän S, Baumgartner W, Klaas M, Schröder W, Wagner H (2007) Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia. Front Zool 4:23

    Google Scholar 

  • Barrett PM, Evans DC, Campione NE (2015) Evolution of dinosaur epidermal structures. Biol Lett 11:20150229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels T (2003) Variations in the morphology, distribution, and arrangement of feathers in domesticated birds. J Exp Zool (Mol Dev Evol) 298B:91–108

    Article  Google Scholar 

  • Bergmann H-H (1987) Die Biologie des Vogels. AULA, Wiesbaden

    Google Scholar 

  • Bleiweiss R (1987) Development and evolution of avian racket plumes: fine structure and serial homology of the wire. J Morphol 194:23–39

    Article  PubMed  Google Scholar 

  • Brinkmann A (1958) Die Morphologie der Schmuckfeder von Aix galericulata L. Rev Suisse Zool 65:485–608

    Article  Google Scholar 

  • Burckhardt D (1954) Beitrag zur embryonalen Pterylose einiger Nesthocker. Rev Suisse Zool 61:551–655

    Article  Google Scholar 

  • Busching W-D (2005) Einführung in die Gefieder- und Rupfungskunde. AULA, Wiebelsheim

    Google Scholar 

  • Chandler AC (1916) A study of the structure of feathers, with reference to their taxonomic significance. Univ Calif Publ Zool 13:243–446

    Google Scholar 

  • Chatterjee S (1997) The rise of birds: 225 million years of evolution. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Chuong C, Edelman GM (1985) Expression of cell-adhesion molecules in embryonic induction. I. Morphogenesis of nestling feathers. J Cell Biol 101:1009–1026

    Article  CAS  PubMed  Google Scholar 

  • D’Alba L, Saranathan V, Clarke JA, Vinther J, Prum RO, Shawkey MD (2011) Colour-producing ß-keratin nanofibres in blue penguin (Eudyptula minor) feathers. Biol Lett 7:543–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin CR (1871) The descent of man, and selection in relation to sex, vol 2. John Murray, London

    Book  Google Scholar 

  • Davies HR (1889) Die Entwicklung der Feder und ihre Beziehungen zu anderen Integumentgebilden. Morphol Jahrb 15:560–645

    Google Scholar 

  • Desselberger H (1930) Ueber das Lipochrom der Vogelfeder. J Ornithol 78:328–376

    Article  Google Scholar 

  • Doucet SM, Shawkey MD, Hill GE, Montgomerie R (2006) Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. J Exp Biol 209:380–390

    Article  PubMed  Google Scholar 

  • Dove CL (1997) Quantification of microscopic feather characters used in the identification of the North American plovers. Condor 99:47–57

    Article  Google Scholar 

  • Duerden JE (1913) Experiments with ostriches. XXII. The development of the feather, showing absence of cruelty in clipping and quilling. Agric J Union of South Africa 6:648–661

    Google Scholar 

  • Dumbacher JP, Menon GK, Daly JW (2009) Skin as a toxin storage organ in the endemic new Guinean genus Pitohui. Auk 126:520–530

    Article  Google Scholar 

  • Eliason CM, Shawkey MD (2012) A photonic heterostructure produces diverse iridescent colours in duck wing patches. J R Soc Interface 9:2279–2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliason CM, Bitton P-P, Shawkey MD (2013) How hollow melanosomes affect iridescent colour production in birds. Proc R Soc B 280:20131505

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewart JC (1921) The nestling feathers of the mallard, with observations on the composition, origin, and history of feathers. Proc Zool Soc London 1921:609–642

    Google Scholar 

  • Exner S (1895) Ueber die elektrischen Eigenschaften der Haare und Federn. Pflugers Arch 61:427–449

    Article  Google Scholar 

  • Exner S (1896) Ueber die elektrischen Eigenschaften der Haare und Federn. Pflugers Arch 63:305–316

    Article  Google Scholar 

  • Feo TJ, Prum RO (2014) Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots. J Exp Zool (Mol Dev Evol) 322B:240–255

    Article  Google Scholar 

  • Foth C (2009) Die Morphologie des Erstlingsgefieders ausgewählter Vogeltaxa unter Berücksichtigung der Phylogenie. University of Rostock, Germany

    Google Scholar 

  • Foth C (2011) The morphology of neoptile feathers: ancestral state reconstruction and its phylogenetic implications. J Morphol 272:387–403

    Article  PubMed  Google Scholar 

  • Godefroit P, Sinitsa SM, Dhouailly D, Bolotsky YL, Sizov AV, McNamara ME, Benton MJ, Spagna P (2014) A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345:451–455

    Article  CAS  PubMed  Google Scholar 

  • Greenwold MJ, Sawyer RH (2011) Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers. J Exp Zool (Mol Dev Evol) 316:609–616

    Article  CAS  Google Scholar 

  • Gregg K, Wilton SD, Parry DAD, Rogers GE (1984) A comparison of genomic coding sequences for feather and scale keratins: structural and evolutionary implications. EMBO J 3:175–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haake AR, König G, Sawyer RH (1984) Avian feather development: relationships between morphogenesis and keratinization. Dev Biol 106:406–413

    Article  CAS  PubMed  Google Scholar 

  • Harris MP, Fallon JF, Prum RO (2002) Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J Exp Zool (Mol Dev Evol) 294:160–176

    Article  CAS  Google Scholar 

  • Hopp TP, Orsen MJ (2004) Dinosaur brooding behavior and the origin of flight feathers. In: Currie PJ, Koppelhus EB, Shugur MA, Wright JL (eds) Feathered dragons. Indiana University Press, Bloomington, pp 234–250

    Google Scholar 

  • Hosker A (1936) Studies on the epidermal structures of birds. Philos Trans R Soc Lond Ser B 226:143–188

    Article  Google Scholar 

  • Hudon J (2005) Considerations in the conservation of feathers and hair, particularly their pigments. In: Brunn M, Burns JA (eds) Fur trade legacy. The preservation of organic materials. Canadian Association for Conservation of Cultural Property, Ottawa, pp 127–147

    Google Scholar 

  • Lillie FR, Wang H (1941) Physiology of development of the feather. V. Experimental morphogenesis. Physiol Zoöl 14:103–133

    Article  Google Scholar 

  • Livezey BC (2003) Evolution of flightlessness in rails (Gruiformes: Rallidae): phylogenetic, ecomorphological, and ontogenetic perspectives. Ornithol Monogr 53:1–654

    Google Scholar 

  • Lucas AM, Stettenheim PR (1972) Avian anatomy. Integument, Part I and II. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Lüdicke M (1974) Radioaktive Markierungsversuche an Federn von Casuarius casuarius. J Ornithol 115:348–364

    Article  Google Scholar 

  • Mason CW (1923) Structural colors in feathers. II. J Phys Chem 27:401–447

    Article  CAS  Google Scholar 

  • McGowan C (1989) Feather structure in flightless birds and its bearing on the question of the origin of feathers. J Zool (Lond) 218:537–547

    Article  Google Scholar 

  • Metcheva R, Yurukova L, Teodorova S, Nikolova E (2006) The penguin feathers as bioindicator of Antarctica environmental state. Sci Total Environ 362:259–265

    Article  CAS  PubMed  Google Scholar 

  • Mickoleit G (2004) Phylogenetische Systematik der Wirbeltiere. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Norberg RÃ… (1985) Function of vane asymmetry and shaft curvature in bird flight feathers; inferences on flight ability of Archaeopteryx. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds. Freunde des Jura-Museums, Eichstätt, pp 303–318

    Google Scholar 

  • Norell MA, Xu X (2005) Feathered dinosaurs. Annu Rev Earth Planet Sci 33:277–299

    Article  CAS  Google Scholar 

  • Prin F, Dhouailly D (2004) How and when the regional competence of chick epidermis is established: feathers vs. scutate and reticualte scales, a problem en route to a solution. Int J Dev Biol 48:137–148

    Article  CAS  PubMed  Google Scholar 

  • Prum RO (1999) Development and evolutionary origin of feathers. J Exp Zool (Mol Dev Evol) 285:291–306

    Article  CAS  Google Scholar 

  • Prum RO (2005) Evolution of the morphological innovations of feathers. J Exp Zool (Mol Dev Evol) 304B:570–579

    Article  Google Scholar 

  • Prum RO, Brush AH (2002) The evolutionary origin and diversification of feathers. Q Rev Biol 77:261–295

    Article  PubMed  Google Scholar 

  • Prum RO, Dyck J (2003) A hierarchical model of plumage: morphology, development, and evolution. J Exp Zool (Mol Dev Evol) 298B:73–90

    Article  Google Scholar 

  • Prum RO, Williamson S (2001) Theory of the growth and evolution of feather shape. J Exp Zool (Mol Dev Evol) 291:30–57

    Article  CAS  Google Scholar 

  • Prum RO, Williamson S (2002) Reaction-diffusion models of within-feather pigmentation patterning. Proc R Soc Lond B 269:781–792

    Article  Google Scholar 

  • Rauhut OWM, Foth C, Tischlinger H, Norell MA (2012) Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the late Jurassic of Germany. Proc Natl Acad Sci U S A 109:11746–11751

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichholf JH (1996) Die Feder, die Mauser und der Ursprung der Vögel. Archaeopteryx 14:27–38

    Google Scholar 

  • Rensch B (1925) Untersuchungen zur Phylogenese der Schillerstruktur. J Ornithol 73:127–147

    Article  Google Scholar 

  • Sawyer RH, Salvatore BA, Potylicky T-TF, French JO, Glenn TC, Knapp LW (2003) Origin of feathers: feather Beta (β) keratins are expressed in discrete epidermal cell populations of embryonic scutate scales. J Exp Zool (Mol Dev Evol) 295B:12–24

    Article  CAS  Google Scholar 

  • Sawyer RH, Rogers L, Washington LD, Glenn TC, Knapp LW (2005) Evolutionary origin of the feather epidermis. Dev Dyn 232:256–267

    Article  PubMed  Google Scholar 

  • Schaub S (1912) Die Nestdunen der Vögel und ihre Bedeutung für die Phylogenie der Feder. Verh Naturforsch Ges Basel 23:131–182

    Google Scholar 

  • Shawkey MD, Hill GE (2006) Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller’s jay (Cyanocitta stelleri). J Exp Biol 209:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Shawkey MD, Hauber ME, Estep LK, Hill GE (2006) Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). J R Soc Interface 3:777–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Shawkey MD, D’Alba L, Xiao M, Schutte M, Buchholz R (2015) Ontogeny of an iridescent nanostructure composed of hollow melanosomes. J Morphol 276:378–384

    Article  PubMed  Google Scholar 

  • Sick H (1937) Morphologisch-funktionelle Untersuchung über die Feinstruktur der Vogelfeder. J Ornithol 85:206–372

    Article  Google Scholar 

  • Starck D (1982) Vergleichende Anatomie der Wirbeltier auf evolutionsbiologischer Grundlage. Bd. 3: Organe des aktiven Bewegungsapparates, der Koordination, der Umweltbeziehung, des Stoffwechsels und der Fortplanzung. Springer, Berlin

    Book  Google Scholar 

  • Stavenga DG, Leertouwe HL, Marshall NJ, Osorio D (2011) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc R Soc B 278:2098–2104

    Article  PubMed  Google Scholar 

  • Storch V, Welsch U (1997) Systematische Zoologie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Thomas ALR (1997) On the tails of birds – what are the aerodynamic functions of birds’ tails, with their incredible diversity of form? Bioscience 47:216–225

    Google Scholar 

  • Vigneron JP, Lousse V, Colomer J-F, Rassart M, Louette M (2006) Complex optical structure in the ribbon-like feathers of the African open-bill stork. Proc SPIE 6320:632014

    Article  Google Scholar 

  • Völker O (1938) Porphyrin in Vogelfedern. J Ornithol 86:436–456

    Article  Google Scholar 

  • Watson GE (1963) The mechanism of feather replacement during natural molt. Auk 80:486–495

    Article  Google Scholar 

  • Wetherbee DK (1957) Natal plumages and downy pteryloses of passerine birds of North America. Bull Am Mus Nat Hist 113:339–436

    Google Scholar 

  • Wohlauer E (1901) Die Entwicklung des Embryonalgefieders von Eudyptes chrysocome. Z Morphol Anthropol 4:149–178

    Google Scholar 

  • Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47:311–329

    Google Scholar 

  • Yu M, Wu P, Widelitz RB, Chuong C (2002) The morphogenesis of feathers. Nature 420:308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Yue Z, Wu P, Wu D, Mayer J-A, Medina M, Widelitz RB, Jiang T, Chuong C (2004) The developmental biology of feather follicles. Int J Dev Biol 48:181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R (2003) Coloration strategies in peacock feathers. Proc Natl Acad Sci U S A 100:12576–12578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Walter Joyce (University of Fribourg) for proofreading this chapter. The review was supported by the Swiss National Science Foundation grant PZ00P2_174040.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foth, C. (2020). Introduction to the Morphology, Development, and Ecology of Feathers. In: Foth, C., Rauhut, O. (eds) The Evolution of Feathers. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-27223-4_1

Download citation

Publish with us

Policies and ethics