Skip to main content

The Evolution of Birds with Implications from New Fossil Evidences

  • Chapter
  • First Online:
The Biology of the Avian Respiratory System

Abstract

Birds have evolved on the planet for over 150 million years and become the most speciose clade of modern vertebrates. Their biological success has been ascribed to important evolutionary novelties including feathers, powered flight, and respiratory system, some of which have a deep evolutionary history even before the origin of birds. The last two decades have witnessed a wealth of exceptionally preserved feathered non-avian dinosaurs and primitive birds, which provide the most compelling evidence supporting the hypothesis that birds are descended from theropod dinosaurs. A handful of Mesozoic bird fossils have demonstrated how birds achieved their enormous biodiversity after diverging from their theropod relatives. On basis of recent fossil discoveries, we review how these new findings add to our understanding of the early avian evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez J, Meseguer J, Meseguer E, Perez A. On the role of the alula in the steady flight of birds. Ardeola. 2001;48:161–73.

    Google Scholar 

  • Baumel JJ, Witmer LM. Osteologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, editors. Handbook of avian anatomy: Nomina anatomica avium. 2nd ed. Cambridge: Nuttall Ornithological Club; 1993. p. 45–132.

    Google Scholar 

  • Bell A, Chiappe LM. A species-level phylogeny of the Cretaceous Hesperornithiformes (Aves: Ornithuromorpha): implications for body size evolution amongst the earliest diving birds. J Syst Palaeontol. 2016;14:239–51.

    Article  Google Scholar 

  • Bell AK, Chiappe LM, Erickson GM, Suzuki S, Watabe M, Barsbold R, Tsogtbaatar K. Description and ecologic analysis of Hollanda luceria, a Late Cretaceous bird from the Gobi Desert (Mongolia). Cretac Res. 2010;31:16–26.

    Article  Google Scholar 

  • Bennett SC. Articulation and function of the pteroid bone of pterosaurs. J Vertebr Paleontol. 2007;27:881–91.

    Article  Google Scholar 

  • Benson RBJ, Butler RJ, Carrano MT, O’Connor PM. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the reptile-bird transition. Biol Rev. 2012;87:168–93.

    Article  PubMed  Google Scholar 

  • Bock W. The arboreal origin of avian flight. Mem Calif Acad Sci. 1986;8:57–72.

    Google Scholar 

  • Britt BB, Makovicky PJ, Gauthier J, Bonde N. Postcranial pneumatization in Archaeopteryx. Nature. 1998;395:374–6.

    Article  CAS  Google Scholar 

  • Brusatte SL, O’Connor JK, Jarvis ED. The origin and diversification of birds. Curr Biol. 2015;25:R888–98.

    Article  CAS  PubMed  Google Scholar 

  • Bundle MW, Dial KP. Mechanics of wing-assisted incline running (WAIR). J Exp Biol. 2003;206:4553–64.

    Article  PubMed  Google Scholar 

  • Burgers P, Chiappe LM. The wing of Archaeopteryx as a primary thrust generator. Nature. 1999;399:60–2.

    Article  CAS  Google Scholar 

  • Burnham DA, Feduccia A, Martin LD, Falk AR. Tree climbing-a fundamental avian adaptation. J Syst Palaeontol. 2011;9:103–7.

    Article  Google Scholar 

  • Chatterjee S. The rise of birds: 225 million years of evolution. 2nd ed. Baltimore: Johns Hopkins University Press; 2015.

    Google Scholar 

  • Chatterjee S, Templin RJ. The flight of Archaeopteryx. Naturwissenschaften. 2003;90:27–32.

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Templin RJ. Feathered coelurosaurs from China: new light on the arboreal origin of avian flight. In: Currie PJ, Koppelhaus EB, Shugar MA, Wright JL, editors. Feathered dragons: studies on the transition from dinosaurs to birds. Bloomington: Indiana University Press; 2004a. p. 1–64.

    Google Scholar 

  • Chatterjee S, Templin RJ. Posture, locomotion, and paleoecology of pterosaurs. Geol Soc Am. 2004b;376:1–64.

    Google Scholar 

  • Chatterjee S, Templin RJ. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui. Proc Natl Acad Sci U S A. 2007;104:1576–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Templin RJ. Palaeoecology, aerodynamics, and the origin of avian flight. In: Talent JA, editor. Earth and life, international year of planet Earth. New York: Springer; 2012. p. 585–612.

    Google Scholar 

  • Chiappe LM. The first 85 million years of avian evolution. Nature. 1995;378:349–55.

    Article  CAS  Google Scholar 

  • Chiappe LM. Late Cretaceous birds of southern South America: anatomy and systematics of Enantiornithes and Patagopteryx deferrariisi. Münchner Geowissenschaftliche Abhandlungen. 1996;30:203–44.

    Google Scholar 

  • Chiappe LM. Osteology of the flightless Patagopteryx deferrariisi from the Late Cretaceous of Patagonia (Argentina). In: Chiappe LM, Witmer LM, editors. Mesozoic birds: above the heads of dinosaurs. Berkeley, CA: University of California Press; 2002. p. 281–316.

    Google Scholar 

  • Chiappe LM, Walker CA. Skeletal morphology and systematics of the Cretaceous Euenantiornithes (Ornithothoraces: Enantiornithes). In: Chiappe LM, Witmer LM, editors. Mesozoic birds: above the heads of dinosaurs. California: University of California Press; 2002. p. 240–67.

    Google Scholar 

  • Chiappe LM, Ji S, Ji Q, Norell MA. Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China. Bull Am Mus Nat Hist. 1999;242:1–89.

    Google Scholar 

  • Chiappe LM, Norell M, Clark J. A new skull of Gobipteryx minuta (Aves: Enantiornithes) from the Cretaceous of the Gobi desert. Am Mus Novit. 2001;3346:1–15.

    Article  Google Scholar 

  • Chiappe LM, Zhao B, O’Connor JK, Gao C, Wang X, Habib M, Marugan-Lobon J, Meng Q, Cheng X. A new specimen of the Early Cretaceous bird Hongshanornis longicresta: insights into the aerodynamics and diet of a basal ornithuromorph. Peer J. 2014;2:e234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christiansen P, Bonde N. Axial and appendicular pneumaticity in Archaeopteryx. Proc R Soc Lond. 2000;267:2501–5.

    Article  CAS  Google Scholar 

  • Claramunt S, Cracraft J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci Adv. 2015;1:e1501005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke JA. Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Am Mus Nat Hist. 2004;286:1–179.

    Article  Google Scholar 

  • Clarke JA, Zhou Z, Zhang F. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. J Anat. 2006;208:287–308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Close RA, Vickers-Rich P, Trusler P, Chiappe LM, O’Connor JK, Rich TH, Kool L, Komarower P. Earliest Gondwanan bird from the Cretaceous of southeastern Australia. J Vertebr Paleontol. 2009;29:616–9.

    Article  Google Scholar 

  • Cracraft J. The origin and early diversification of birds. Paleobiology. 1986;12:383–99.

    Article  Google Scholar 

  • de Souza Carvalho I, Novas FE, Agnolin FL, Isasi MP, Freitas FI, Andrade JA. A Mesozoic bird from Gondwana preserving feathers. Nat Commun. 2015;6:7141.

    Article  PubMed Central  CAS  Google Scholar 

  • Dial KP. Wing-assisted incline running and the evolution of flight. Science. 2003;299:402–4.

    Article  CAS  PubMed  Google Scholar 

  • Duncker HR. Structure of avian lungs. Respir Physiol. 1972;14:44–63.

    Article  CAS  PubMed  Google Scholar 

  • Duncker HR. General morphological principles of amniotic lungs. In: Piiper J, editor. Respiratory function in birds, adult and embryonic. Berlin: Springer; 1978. p. 2–22.

    Chapter  Google Scholar 

  • Duncker HR. The lung air sac system of birds: a contribution to the functional anatomy of the respiratory apparatus. Berlin-Heidelberg: Springer; 2013.

    Google Scholar 

  • Dyke GJ, Nudds RL. The fossil record and limb disparity of enantiornithines, the dominant flying birds of the Cretaceous. Lethaia. 2009;42:248–54.

    Article  Google Scholar 

  • Elzanowski A. Archaeopterygidae (Upper Jurassic of Germany). In: Chiappe LM, Witmer LM, editors. Mesozoic birds: above the heads of dinosaurs. California: University of California Press; 2002. p. 129–59.

    Google Scholar 

  • Elzanowski A, Wellnhofer P. Cranial morphology of Archaeopteryx: evidence from the seventh skeleton. J Vertebr Paleontol. 1996;16:81–94.

    Article  Google Scholar 

  • Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett. 2006;2:543–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feduccia A. The problem of bird origins and early avian evolution. J Ornithol. 2001;142:139–47.

    Article  Google Scholar 

  • Feduccia A. ‘Big bang’ for tertiary birds? Trends Ecol Evol. 2003;18:172–6.

    Article  Google Scholar 

  • Forster CA, Sampson SD, Chiappe LM, Krause DW. The theropod ancestry of birds: new evidence from the Late Cretaceous of Madagascar. Science. 1998;279:1915–9.

    Article  CAS  PubMed  Google Scholar 

  • Forster CA, Chiappe LM, Krause DW, Sampson SD. Vorona berivotrensis, a primitive bird from the Late Cretaceous of Madagascar. In: Chiappe LM, Witmer LM, editors. Mesozoic birds: above the heads of dinosaurs. Berkeley, CA: University of California Press; 2002. p. 268–80.

    Google Scholar 

  • Foth C, Tischlinger H, Rauhut OWM. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature. 2014;511:79–82.

    Article  CAS  PubMed  Google Scholar 

  • Fröbisch J, Reisz RR. The Late Permian herbivore Suminia and the early evolution of arboreality in terrestrial vertebrate ecosystems. Proc R Soc Lond. 2009;283:1–8.

    Google Scholar 

  • Galton PM, Martin LD. Enaliornis, an Early Cretaceous Hesperornithiform bird from England. In: Chiappe LM, Witmer LM, editors. Mesozoic birds: above the heads of dinosaurs. Berkeley, CA: University of California Press; 2002. p. 317.

    Google Scholar 

  • Gao C, Chiappe LM, Zhang F, Pomeroy DL, Shen C, Chinsamy A, Walsh MO. A subadult specimen of the Early Cretaceous bird Sapeornis chaoyangensis and a taxonomic reassessment of sapeornithids. J Vertebr Paleontol. 2012;32:1103–12.

    Article  CAS  Google Scholar 

  • Gatesy SM, Dial KP. Locomotor modules and the evolution of avian flight. Evolution. 1996;50:331–40.

    Article  Google Scholar 

  • Gatesy SM, Middleton KM. Bipedalism, flight, and the evolution of theropod locomotor diversity. J Vertebr Paleontol. 1997;17:308–29.

    Article  Google Scholar 

  • Gatesy SM, Middleton KM. Skeletal adaptations for flight. In: Hall BK, editor. Fins into limbs: evolution, development, and transformation. Chicago: University of California Press; 2007. p. 269–83.

    Google Scholar 

  • Gauthier J, Gall LF. Phylogenetic relationships among coelurosaurian theropods. In: Gauthier J, Gall LF, editors. New perspectives on the origin and early evolution of birds. New Haven: Yale University Press; 2001. p. 49–67.

    Google Scholar 

  • Gauthier J, Padian K. Phylogenetic, functional, and aerodynamic analyses of the origin of birds and their flight. In: Hecht JH, Ostrom GV, editors. The beginnings of birds. Eichstatt: Freunde des Jura-Museum; 1985. p. 185–97.

    Google Scholar 

  • Gill FB. Ornithology. 3rd ed. New York: W.H. Freeman; 2007.

    Google Scholar 

  • Gregory JT. The jaws of the Cretaceous toothed birds, Ichthyornis and Hesperornis. Condor. 1952;54:73–88.

    Article  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763–8.

    Article  CAS  PubMed  Google Scholar 

  • Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, Chojnowski JL, Hackett SJ, Han K, Kimball RT, Marks BD, Miglia KJ, Moore WS, Reddy S, Sheldon FH, Steadman DW, Steppan SJ, Witt CC, Yuri T. Phylogenomic evidence for multiple losses of flight in ratite birds. Proc Natl Acad Sci U S A. 2008;105:13462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Wang X, Jin F, Zhou Z, Wang F, Yang L, Ding X, Boven A, Zhu R. The 40Ar/39Ar dating of the early Jehol Biota from Fengning, Hebei Province, northern China. Geochem Geophys Geosyst. 2006;7:Q04001.

    Article  CAS  Google Scholar 

  • Heers AM, Dial KP. From extant to extinct: locomotor ontogeny and the evolution of avian flight. Trends Ecol Evol. 2012;27:296–305.

    Article  PubMed  Google Scholar 

  • Hopson JA. Ecomorphology of avian and nonavian theropod phalangeal proportions: implications for the arboreal versus terrestrial origin of bird flight. In: Gauthier J, Gall LF, editors. New perspectives on the origin and early evolution of birds. New Haven: Yale University; 2001. p. 211–35.

    Google Scholar 

  • Hou L, Zhou Z, Martin LD, Feduccia A. A beaked bird from the Jurassic of China. Nature. 1995;377:616–8.

    Article  Google Scholar 

  • Hou L, Matin LD, Zhou Z, Feduccia A, Zhang F. A diapsid skull in a new species of the primitive bird Confuciusornis. Nature. 1999;399:679–82.

    Article  CAS  Google Scholar 

  • Hou L, Chiappe LM, Zhang F, Chuong CM. New Early Cretaceous fossil from China documents a novel trophic specialization for Mesozoic birds. Naturwissenschaften. 2004;91:22–5.

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Hou L, Zhang L, Xu X. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature. 2009;461:640–3.

    Article  CAS  PubMed  Google Scholar 

  • Huxley TH. On the animals which are most nearly intermediate between birds and reptiles. Ann Mag Nat Hist. 1868;4:66–75.

    Google Scholar 

  • Hwang SH, Norell MA, Ji Q, Gao K. New specimens of Microraptor zhaoianus (Theropoda: Dromaeosauridae) from northeastern China. Am Mus Novit. 2002;381:1–44.

    Article  Google Scholar 

  • Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, Lindow B, Warren WC, Ray D, Green RE, Bruford MW, Zhan X, Dixon A, Li S, Li N, Huang Y, Derryberry EP, Bertelsen MF, Sheldon FH, Brumfield RT, Mello CV, Lovell PV, Wirthlin M, Schneider MPC, Prosdocimi F, Samaniego JA, Velazquez AMV, Alfaro-Núñez A, Campos PF, Petersen B, Sicheritz-Ponten T, Pas A, Bailey T, Scofield P, Bunce M, Lambert DM, Zhou Q, Perelman P, Driskell AC, Shapiro B, Xiong Z, Zeng Y, Liu S, Li Z, Liu B, Wu K, Xiao J, Yinqi X, Zheng Q, Zhang Y, Yang H, Wang J, Smeds L, Rheindt FE, Braun M, Fjeldsa J, Orlando L, Barker FK, Jønsson KA, Johnson W, Koepfli K-P, O’Brien S, Haussler D, Ryder OA, Rahbek C, Willerslev E, Graves GR, Glenn TC, McCormack J, Burt D, Ellegren H, Alström P, Edwards SV, Stamatakis A, Mindell DP, Cracraft J, Braun EL, Warnow T, Jun W, Gilbert MTP, Zhang G. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin F, Zhang F, Li Z, Zhang J, Li C, Zhou Z. On the horizon of Protopteryx and the early vertebrate fossil assemblages of the Jehol Biota. Chin Sci Bull. 2008;53:2820–7.

    Google Scholar 

  • Kurochkin EN. A true carinate bird from lower Cretaceous deposits in Mongolia and other evidence of early Cretaceous birds in Asia. Cretac Res. 1985;6:271–8.

    Article  Google Scholar 

  • Lee MSY, Worthy TH. Likelihood reinstates Archaeopteryx as a primitive bird. Biol Lett. 2011;12:1–6.

    CAS  Google Scholar 

  • Lee MSY, Cau A, Naish D, Dyke GJ. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science. 2014;345:562–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim J, Park H, Jabłoński PG, Choi H. The function of the alula in avian flight. Sci Rep. 2015;5:9914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefèvre U, Hu D, Escuillié F, Dyke G, Godefroit P. A new long-tailed basal bird from the lower Cretaceous of north-eastern China. Biol J Linn Soc. 2014;113:790–804.

    Article  Google Scholar 

  • Li Z, Zhou Z, Wang M, Clarke JA. A new specimen of large-bodied basal enantiornithine Bohaiornis from the Early Cretaceous of China and the inference of feeding ecology in Mesozoic birds. J Paleontol. 2014;88:99–108.

    Article  Google Scholar 

  • Longrich NR, Tokaryk T, Field DJ. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proc Natl Acad Sci. 2011;108(37):15253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longrich NR, Vinther J, Meng Q, Li Q, Russell AP. Primitive wing feather arrangement in Archaeopteryx lithographica and Anchiornis huxleyi. Curr Biol. 2012;22:2262–7.

    Article  CAS  PubMed  Google Scholar 

  • Maina J. The lung-air sac system of birds: development, structure, and function. Berlin: Springer; 2005.

    Google Scholar 

  • Marsh OC. Odontornithes: a monograph on the extinct toothed birds of North America. Rep Geol Expl Fortieth Parallels. 1880;7:1–201.

    Google Scholar 

  • Martin L. The origin of birds and of avian flight. In: Johnston R, editor. Current ornithology, vol. 1. New York: Plenum; 1983. p. 105–29.

    Chapter  Google Scholar 

  • Martin LD. A new hesperornithid and the relationships of the Mesozoic birds. Trans Kans Acad Sci. 1984;87:141–50.

    Article  Google Scholar 

  • Mayr G. Paleogene fossil birds. Berlin-Heidelberg: Springer; 2009.

    Book  Google Scholar 

  • Mayr G. Metaves, Mirandornithes, Strisores and other novelties – a critical review of the higher-level phylogeny of neornithine birds. J Zool Syst Evol Res. 2011;49:58–76.

    Article  Google Scholar 

  • Mayr G, Pohl B, Peters DS. A well-preserved Archaeopteryx specimen with theropod features. Science. 2005;310:1483–6.

    Article  CAS  PubMed  Google Scholar 

  • Mayr G, Pohl B, Hartman S, Peters DS. The tenth skeletal specimen of Archaeopteryx. Zool J Linn Soc Lond. 2007;149:97–116.

    Article  Google Scholar 

  • McLelland J. Anatomy of the lungs and air sacs. In: King AS, McLelland J, editors. Form and function in birds. London: Academic; 1989. p. 221–79.

    Google Scholar 

  • Nopcsa F. Ideas on the origin of flight. Proc Zool Soc Lond. 1907;77(1):223–36.

    Article  Google Scholar 

  • Nopsca F. On the origin of flight in birds. Proc Zool Soc Lond. 1923;1923:463–77.

    Google Scholar 

  • Norell MA, Makovicky PJ. Dromaeosauridae. In: Weishampel DB, Dodson P, editors. The Dinosauria. 2nd ed. Berkeley, CA: University of California Press; 2004. p. 196–209.

    Google Scholar 

  • Novacek MJ. 100 million years of land vertebrate evolution: the Cretaceous-Early Tertiary transition. Ann Mo Bot Gard. 1999;86:230–58.

    Article  Google Scholar 

  • O’Connor PM. Pulmonary pneumaticity in the postcranial skeleton of extant Aves: a case study examining Anseriformes. J Morphol. 2004;261:141–61.

    Article  PubMed  Google Scholar 

  • O’Connor PM. Postcranial pneumaticity: an evaluation of soft-tissue influences on the postcranial skeleton and the reconstruction of pulmonary anatomy in archosaurs. J Morphol. 2006;267:1199–226.

    Article  PubMed  Google Scholar 

  • O’Connor PM. Evolution of archosaurian body plans: skeletal adaptations of an air-sac-based breathing apparatus in birds and other archosaurs. J Exp Zool. 2009;311A:629–46.

    Article  Google Scholar 

  • O’Connor JK, Chiappe LM. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J Syst Palaeontol. 2011;9:135–57.

    Article  Google Scholar 

  • O’Connor PM, Claessens LPAM. Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature. 2005;436:253–6.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor JK, Zhou Z. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J Ornithol. 2015;156:333–42.

    Article  Google Scholar 

  • O’Connor JK, Wang X, Chiappe LM, Gao C, Meng Q, Cheng X, Liu J. Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species. J Vertebr Paleontol. 2009;29:188–204.

    Article  Google Scholar 

  • O’Connor JK, Chiappe LM, Gao C, Zhao B. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaentol Pol. 2011a;56:463–75.

    Article  Google Scholar 

  • O’Connor JK, Sun C, Xu X, Wang X, Zhou Z. A new species of Jeholornis with complete caudal integument. Hist Biol. 2011b;24:29–41.

    Article  Google Scholar 

  • O’Connor JK, Zhou Z, Xu X. Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proc Natl Acad Sci U S A. 2011c;108:19662–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor JK, Zhang Y, Chiappe LM, Meng Q, Li Q, Liu D. A new enantiornithine from the Yixian Formation with the first recognized avian enamel specialization. J Vertebr Paleontol. 2013;33:1–12.

    Article  Google Scholar 

  • Ostrom JH. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bull Peabody Mus Nat Hist. 1969;30:1–165.

    Google Scholar 

  • Ostrom JH. Archaeopteryx and the origin of flight. Q Rev Biol. 1974;49:27–47.

    Article  Google Scholar 

  • Ostrom JH. Bird flight: how did it begin? Did birds begin to fly “from the trees down” or “from the ground up”? Reexamination of Archaeopteryx adds plausibility to an “up from the ground” origin of avian flight. Am Sci. 1979;67:46–56.

    CAS  PubMed  Google Scholar 

  • Padian K, Chiappe LM. The origin of birds and their flight. Sci Am. 1998;278:28–37.

    Article  Google Scholar 

  • Pennycuick CJ. Mechanical constraints on the evolution of flight. Mem Calif Acad Sci. 1986;8:83–98.

    Google Scholar 

  • Phil S. Scapular orientation in theropods and basal birds, and the origin of flapping flight. Acta Palaeontol Pol. 2006;51:305–13.

    Google Scholar 

  • Poore SO, Sanchez-Haiman A, Goslow GE. Wing upstroke and the evolution of flapping flight. Nature. 1997;387:799–802.

    Article  CAS  Google Scholar 

  • Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.

    Article  CAS  PubMed  Google Scholar 

  • Pu H, Chang H, Lü J, Wu Y, Xu L, Zhang J, Jia S. A new juvenile specimen of Sapeornis (Pygostylia: Aves) from the Lower Cretaceous of Northeast China and allometric scaling of this basal bird. Paleontol Res. 2013;17(1):27–8.

    Article  Google Scholar 

  • Pycraft WP. On the morphology and phylogeny of the Palaeognathae (Ratitae Crypturi) and Neognathae (Carinatae). Trans Zool Soc Lond. 1900;15:149–290.

    Article  Google Scholar 

  • Roff DA. The evolution of flightlessness: is history important? Evol Ecol. 1994;8:639–57.

    Article  Google Scholar 

  • Ruben JA, Dal Sasso C, Geist NR, Hillenius WJ, Jones TD, Signore M. Pulmonary function and metabolic physiology of theropod dinosaurs. Science. 1999;283:514–6.

    Article  CAS  PubMed  Google Scholar 

  • Sanz JL, Chiappe LM, Perez-Moreno BP, Buscalioni AD, Moratalla JJ, Ortega F, Poyato-Ariza FJ. An Early Cretaceous bird from Spain and its implications for the evolution of avian flight. Nature. 1996;382:442–5.

    Article  CAS  Google Scholar 

  • Schachner ER, Lyson TR, Dodson P. Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology. Anat Rec. 2009;292:1501–13.

    Article  Google Scholar 

  • Schutt JWA, Simmons NB. Morphology and homology of the chiropteran calcar, with comments on the phylogenetic relationships of Archaeopteropus. J Mamm Evol. 1998;5:1–32.

    Article  Google Scholar 

  • Sereno PC, Rao C, Li J. Sinornis santensis (Aves: Enantiornithes) from the Early Cretaceous of northeastern China. In: Chiappe LM, Witmer LM, editors. Mesozoic birds: above the heads of dinosaurs. Berkeley, CA: University of California Press; 2002. p. 184–208.

    Google Scholar 

  • Thorington RW, Darrow K, Anderson CG. Wing tip anatomy and aerodynamics in flying squirrels. J Mammal. 1998;79:245–50.

    Article  Google Scholar 

  • Turner AH, Makovicky PJ, Norell MA. A review of dromaeosaurid systematics and paravian phylogeny. Bull Am Mus Nat Hist. 2012;371:1–206.

    Article  Google Scholar 

  • Vickers-Rich P, Chiappe LM, Kurzanov S. The enigmatic birdlike dinosaur Avimimus portentosus. In: Chiappe L, Witmer LM, editors. Mesozoic birds: above the heads of dinosaurs. California: University California Press; 2002. p. 65–86.

    Google Scholar 

  • Walker A. New subclass of birds from the Cretaceous of South America. Nature. 1981;292:51–3.

    Article  Google Scholar 

  • Wang M. Taxonomical revision, ontogenetic, ecological and phylogenetic analyses of Enantiornithes (Aves: Ornithothoraces) of China. Dissertation. University of Chinese Academy of Sciences. 2014.

    Google Scholar 

  • Wang M, Lloyd GT. Rates of morphological evolution are heterogeneous in Early Cretaceous birds. Proc R Soc Biol B. 2016;283:1828.

    Google Scholar 

  • Wang M, Zhou Z. A new adult specimen of the basalmost ornithuromorph bird Archaeorhynchus spathula (Aves: Ornithuromorpha) and its implications for early avian ontogeny. J Syst Palaeontol. 2016; doi:10.1080/14772019.2015.1136968.

    Google Scholar 

  • Wang M, O’Connor JK, Zhou Z. A new robust enantiornithine bird from the Lower Cretaceous of China with scansorial adaptations. J Vertebr Paleontol. 2014;34:657–71.

    Article  Google Scholar 

  • Wang M, Li D, O’Connor JK, Zhou Z, You H. Second species of enantiornithine bird from the Lower Cretaceous Changma Basin, northwestern China with implications for the taxonomic diversity of the Changma avifauna. Cretac Res. 2015a;55:56–65.

    Article  CAS  Google Scholar 

  • Wang M, Zheng X, O’Connor JK, Lloyd GT, Wang X, Wang Y, Zhang X, Zhou Z. The oldest record of Ornithuromorpha from the Early Cretaceous of China. Nat Commun. 2015b;6:6987.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhou Z, Sullivan C. A fish-eating enantiornithine bird from the Early Cretaceous of China provides evidence of modern avian digestive features. Curr Biol. 2016a;26:1170–6.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang X, Wang Y, Zhou Z. A new basal bird from China with implications for morphological diversity in early birds. Sci Rep. 2016b;6:19700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Zhou Z, Zhou S. A new basal ornithuromorph bird (Aves: Ornithothoraces) from the Early Cretaceous of China with implication for morphology of early Ornithuromorpha. Zool J Linn Soc Lond. 2016c;176:207–23.

    Article  Google Scholar 

  • Wellnhofer P. Archaeopteryx. Münich: Der Urvogel von Solnhofen; 2008.

    Google Scholar 

  • Wellnhofer P. A short history of research on Archaeopteryx and its relationship with dinosaurs. Geol Soc Lond. 2010;343:237–50.

    Article  Google Scholar 

  • Williston S. Are birds derived from dinosaurs. Kansas City Rev Sci. 1879;3:457–60.

    Google Scholar 

  • Xu X, Mackem S. Tracing the evolution of avian wing digits. Curr Biol. 2013;23:R538–44.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou Z, Wang X. The smallest known non-avian theropod dinosaur. Nature. 2000;408:705–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X. Four-winged dinosaurs from China. Nature. 2003;421:335–40.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zheng X, You H. Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature. 2010;464:1338–41.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, You H, Du K, Han F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature. 2011;475:465–70.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou Z, Dudley R, Mackem S, Chuong CM, Erickson GM, Varricchio DJ. An integrative approach to understanding bird origins. Science. 2014;346:1253293.

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Zheng X, Sullivan C, Wang X, Xing L, Wang Y, Zhang X, O’Connor JK, Zhang F, Pan Y. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature. 2015;521:70–3.

    Article  CAS  PubMed  Google Scholar 

  • You H, Lamanna MC, Harris JD, Chiappe LM, O’Connor JK, Ji S, Lü J, Yuan C, Li D, Zhang X, Lacovara KJ, Dodson P, Ji Q. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science. 2006;312:1640–3.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tian X. Analyses of diversity of avian tarsometatarsus shape and its function. Sichuan J Zool. 2006;25:703–9.

    Google Scholar 

  • Zhang F, Zhou Z. A primitive enantiornithine bird and the origin of feathers. Science. 2000;290:1955–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhou Z, Hou L, Gu G. Early diversification of birds: evidence from a new opposite bird. Chin Sci Bull. 2001;46:945–9.

    Article  Google Scholar 

  • Zhang F, Zhou Z, Xu X, Wang X. A juvenile coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften. 2002;89:394–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhou Z, Dyke GJ. Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geol J. 2006;41:395–404.

    Article  Google Scholar 

  • Zhang F, Zhou Z, Xu X, Wang X, Sullivan C. A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature. 2008a;455:1105–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhou Z, Benton MJ. A primitive confuciusornithid bird from China and its implications for early avian flight. Sci China Ser A. 2008b;51:625–39.

    Google Scholar 

  • Zheng X, Martin LD, Zhou Z, Burnham DA, Zhang F, Miao D. Fossil evidence of avian crops from the Early Cretaceous of China. Proc Natl Acad Sci U S A. 2011;108:15904–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, O’Connor JK, Huchzermeyer F, Wang X, Wang Y, Wang M, Zhou Z. Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature. 2013;495:507–11.

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, O’Connor JK, Wang X, Wang M, Zhang X, Zhou Z. On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc Natl Acad Sci U S A. 2014a;111:13900–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, O’Connor JK, Huchzermeyer F, Wang X, Wang Y, Zhang X, Zhou Z. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS One. 2014b;9:e95036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Z. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften. 2004a;91:455–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z. Gastroliths in Yanornis: an indication of the earliest radical diet-switching and gizzard plasticity in the lineage leading to living birds? Naturwissenschaften. 2004b;91:455–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Farlow JO. Flight capability and habits of Confuciusornis. In: Gauthier J, Gall LF, editors. New perspectives on the origin and early evolution of birds. New Haven: Yale University Press; 2001. p. 237–54.

    Google Scholar 

  • Zhou Z, Wang Y. Vertebrate diversity of the Jehol Biota as compared with other lagerstätten. Sci China Earth Sci. 2010;53:1894–907.

    Article  Google Scholar 

  • Zhou Z, Zhang F. Two new ornithurine birds from the Early Cretaceous of western Liaoning, China. Chin Sci Bull. 2001;46:1258–64.

    Article  Google Scholar 

  • Zhou Z, Zhang F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature. 2002a;418:405–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang F. Largest bird from the Early Cretaceous and its implications for the earliest avian ecological diversification. Naturwissenschaften. 2002b;89:34–8.

    Article  PubMed  Google Scholar 

  • Zhou Z, Zhang F. Jeholornis compared to Archaeopteryx, with a new understanding of the earliest avian evolution. Naturwissenschaften. 2003a;90:220–5.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang F. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can J Earth Sci. 2003b;40:731–47.

    Article  Google Scholar 

  • Zhou Z, Zhang F. Discovery of an ornithurine bird and its implication for Early Cretaceous avian radiation. Proc Natl Acad Sci U S A. 2005;102:18998–9002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Zhang F. Mesozoic birds of China—a synoptic review. Vertebr Palasiat. 2006a;44:74–98.

    Google Scholar 

  • Zhou Z, Zhang F. A beaked basal ornithurine bird (Aves, Ornithurae) from the Lower Cretaceous of China. Zool Scr. 2006b;35:363–73.

    Article  CAS  Google Scholar 

  • Zhou Z, Clarke J, Zhang F. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. J Anat. 2008;212:565–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Zhang F, Li Z. A new basal ornithurine bird (Jianchangornis microdonta gen. et sp. nov.) from the Lower Cretaceous of China. Vertebr Palasiat. 2009;47:299–310.

    Google Scholar 

  • Zhou Z, Li Z, Zhang F. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc R Soc B. 2010;277:219–27.

    Article  PubMed  Google Scholar 

  • Zhou S, Zhou Z, O’Connor JK. Anatomy of the basal ornithuromorph bird Archaeorhynchus spathula from the Early Cretaceous of Liaoning. China J Vertebr Paleontol. 2013;33:141–52.

    Article  CAS  Google Scholar 

  • Zhou S, Zhou Z, O’Connor JK. A new piscivorous ornithuromorph from the Jehol Biota. Hist Biol. 2014a;26:608–18.

    Article  Google Scholar 

  • Zhou S, O’Connor JK, Wang M. A new species from an ornithuromorph (Aves: Ornithothoraces) dominated locality of the Jehol Biota. Chin Sci Bull. 2014b;59:5366–78.

    Article  Google Scholar 

  • Zusi RL. Patterns of diversity in the avian skull. In: Hanken J, Hall BK, editors. The skull. Chicago, IL: University of Chicago Press; 1993. p. 391–437.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Xing Xu, Gerald Mayr, and Oliver Rauhut for sharing specimen photographs and Brain Choo for the illustration of Yi qi. This study was supported by the National Natural Science Foundation of China (91514302, 41502002) and the Youth Innovation Promotion Association (CAS, 2016073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, M., Zhou, Z. (2017). The Evolution of Birds with Implications from New Fossil Evidences. In: Maina, J. (eds) The Biology of the Avian Respiratory System. Springer, Cham. https://doi.org/10.1007/978-3-319-44153-5_1

Download citation

Publish with us

Policies and ethics