Skip to main content

Changing Perspectives on Subterranean Habitats

  • Chapter
  • First Online:
Karstology in the Classical Karst

Abstract

In this chapter, we review the status of the hypothesis that the dichotomy between shallow and deep subterranean habitats is a fundamental one, updating the original book-length presentation of this hypothesis (Culver and Pipan 2014), and consider the status of dim light habitats, such as leaf litter and partially de-roofed caves (Mejía-Ortíz et al. 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnedo MA, Oromí P, Múrria C, Macías-Hernández N, Ribera C (2007) The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera (Araneae, Dysderidae) in the Canary Islands. Invertebr Syst 21:623–660

    Article  Google Scholar 

  • Audra P, Palmer AN (2015) Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns. Acta Carsolog 44(3):315–348

    Google Scholar 

  • Auler AS, Piló LB, Senko JM, Sasowsky ID, Barton HA (2014) Hypogene cave patterns in iron ore caves: convergence of forms or processes? In: Klimchouk A, Sasowsky ID, Mylroie J, Engel SA, Engel AS (eds) Hypogene caves morphologies, Karst Waters Institute Special Publication 18, Leesburg, Virginia, pp 15–19

    Google Scholar 

  • Botosaneanu L (ed) (1986) Stygofauna mundi. E.J. Brill, Leiden, The Netherlands

    Google Scholar 

  • Botosaneanu L (ed) (1998) Studies in crenobiology. The biology of springs and spring-brooks, Backhuys, Kerkswere, The Netherlands

    Google Scholar 

  • Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. Compte Rendus de l’Académie des Sciences de Paris 265:369–370

    Google Scholar 

  • Boulton AJ, Hancock PJ (2006) Rivers as groundwater dependent ecosystems: a review of degrees of dependency, riverine processes, and management implications. Aust J Bot 54:133–144

    Article  Google Scholar 

  • Brancelj A (2015) The Velika Pasica cave. The history, environment, and life in it. ZRC Publishing, Ljubljana

    Google Scholar 

  • Buss S, Cai Z, Cardenas B et al (2009) The hyporheic handbook. Environmental Agency, Bristol, UK

    Google Scholar 

  • Christiansen KA (1962) Proposition pour la classification des animaux cavernicoles. Spelunca 2:75–78

    Google Scholar 

  • Christman MC, Doctor DH, Niemiller ML, Weary DJ, Young JA, Zigler KS, Culver DC (2016) Predicting the occurrence of cave-inhabiting fauna based on features of the Earth surface environment. PLoS ONE 11:e0160408. https://doi.org/10.1371/journal.pone.0160408

    Article  Google Scholar 

  • Ciani A, Goss KU, Scharzenbach RP (2005) Light penetration in soil and particulate minerals. Eur J Soil Sci 50:561–574

    Article  Google Scholar 

  • Coiffait H (1958) Les coléoptères du sol. Vie et Milieu Supplement 7:1–204

    Google Scholar 

  • Coineau N (2000) Adaptations to interstitial groundwater life. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier Press, Amsterdam, pp 189–210

    Google Scholar 

  • Crouau-Roy B (1987) Spéciation and structure génétique des populations chez les coléoptères Speonomus. Mémoires de Biospéologie 14:1–312

    Google Scholar 

  • Crouau-Roy B, Crouau Y, Ferre C (1992) Dynamic and temporal structure of the troglobite beetle Speonomus hydrophilus (Coleoptera: Bathysciinae). Ecography 15:12–18

    Article  Google Scholar 

  • Culver DC, Pipan T (2008) Superficial subterranean habitats—gateway to the subterranean realm? Cave and Karst Sci 35:5–12

    Google Scholar 

  • Culver DC, Pipan T (2010) Climate, abiotic factors, and the evolution of subterranean life. Acta Carsolog 39:577–586

    Article  Google Scholar 

  • Culver DC, Pipan T (2011) Redefining the extent of the aquatic subterranean biotope—shallow subterranean habitats. Ecohydrology 4:721–730

    Article  Google Scholar 

  • Culver DC, Pipan T (2013) Subterranean ecosystems. In: Levin SA (ed) Encyclopedia of Biodiversity, 2nd edn. Academic Press, Waltham, Massachusetts, pp 49–62

    Chapter  Google Scholar 

  • Culver DC, Pipan T (2014) Shallow subterranean habitats. Ecology, evolution, and conservation. Oxford University Press, Oxford, p 258

    Google Scholar 

  • Culver DC, Pipan T (2015) Shifting paradigms of the evolution of cave life. Acta Carsolog 44:415–425

    Google Scholar 

  • Culver DC, Pipan T (2019) The biology of caves and other subterranean habitats, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Culver DC, Pipan T, Gottstein S (2006) Hypotelminorheic—a unique freshwater habitat. Subterr Biol 4:1–8

    Google Scholar 

  • Culver DC, Holsinger JR, Christman MC, Pipan T (2010) Morphological differences among eyeless amphipods in the genus Stygobromus dwelling in different subterranean habitats. J Crustac Biol 30:68–74

    Article  Google Scholar 

  • Culver DC, Holsinger JR, Feller DJ (2012) The fauna of seepage springs and other shallow subterranean habitats in the mid-Atlantic Piedmont and Coastal Plain. Northeastern Naturalist 19 (Monograph 9), pp 1–42

    Google Scholar 

  • Cvijić J (1893) Das Karstphänomen. Geographische Abhandlungen herausgegeben Wien 5:217–330

    Google Scholar 

  • Dreybrodt W, Gabrovšek F (2002) Basic processes and mechanisms governing the evolution of karst. In: Gabrovšek F (ed) Evolution of karst from prekarst to cessation. Založba ZRC, Ljubljana, pp 115–154

    Google Scholar 

  • Ferreira RL, de Oliveira MPA, Silva MS (2018) Subterranean biodiversity in ferruginous landscapes. In: Moldovan O, Kováč L, Halse S (eds) Cave ecology. Springer, Cham, Switzerland, pp 435–447

    Chapter  Google Scholar 

  • Ford DC, Ewers RL (1978) The development of limestone cave systems in the dimensions of length and breadth. Can J Earth Sci 15:1783–1798

    Article  Google Scholar 

  • Friedrich M (2013) Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol 53:50–67

    Article  Google Scholar 

  • Friedrich M, Chen R, Daines B, Bao R, Caravas J, Rai PK, Zagmajster M, Peck SM (2011) Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth. J Exp Biol 214:3532–3541

    Article  Google Scholar 

  • Gabrovšek F (2004) Attempts to model the early development of epikarst. In: Jones WK, Culver DC, Herman JS (eds) Epikarst. Proceedings of the symposium held October 1 through 4, 2003 Sheperdstown, West Virginia. Karst Waters Institute, Charles Town, West Virginia, pp 50–55

    Google Scholar 

  • Gers C (1998) Diversity of energy fluxes and interactions between arthropod communities, from soil to cave. Acta Oecol 19:205–213

    Article  Google Scholar 

  • Giachino PM, Vailati D (2010) The subterranean environment. Hypogean life, concepts and collecting techniques. WBA Handbook 3, Verona, Italy, p 132

    Google Scholar 

  • Gibert J (1986) Ecologie d’un systeme karstique Jurassien. Hydrogéologie, derive animale, transits de matières, dynamique de la population de Niphargus (Crustacé Amphipode). Mémoires de Biospéologie 13:1–379

    Google Scholar 

  • Gibert J, Dole-Olivier MJ, Marmonier P, Vervier P (1990) Surface water/groundwater ecotones. In: Naiman RJ, Décamps H (eds) Ecology and management of aquatic-terrestrial ecotones. Parthenon Publishing, Carnforth, UK, pp 199–225

    Google Scholar 

  • Gibert J, Danielopol DL, Stanford JA (eds) (1994) Groundw Ecol. Academic Press, San Diego, California

    Google Scholar 

  • Gilbert H, Culver DC, Keany J (2018) Response of shallow subterranean freshwater amphipods to habitat drying. Subterr Biol 28:15–28

    Article  Google Scholar 

  • Ginet R (1985) Redescription du type de l’amphipode hypogé Niphargus rhenorhodanensis Schellenberg. Crustaceana 48:225–243

    Article  Google Scholar 

  • Guzik MT, Cooper SJB, Humphreys WF, Austin AD (2009) Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Mol Ecol 18:3683–3698

    Article  Google Scholar 

  • Hahn H (2009) A proposal for an extended typology of groundwater habitats. Hydrol J 17:77–81

    Google Scholar 

  • Halse SA, Pearson GB (2014) Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterr Biol 13:17–34

    Article  Google Scholar 

  • Heads SW (2010) The first fossil spider cricket (Orthoptera: Gryllidae: Phalangopsinae): 20 million years of troglobiomorphosis or exaptation in the dark? Zool J Linn Soc 158:56–65

    Article  Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawai`i. Bull Geol Soc Am 106:351–370

    Article  Google Scholar 

  • Howarth FG (1972) Cavernicoles in lava tubes on the island of Hawaii. Science 175:325–326

    Article  Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Ecol Syst 28:365–389

    Google Scholar 

  • Howarth FG (1987) The evolution of non-relictual tropical troglobites. Int J Speleol 16:1–16

    Article  Google Scholar 

  • Humphreys WF, Watts CHS, Cooper SJB, Leijs R (2009) Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the western plateau, Australia. Hydrobiologia 626:79–95

    Article  Google Scholar 

  • Hutchins BT, Engel AS, Nowlin WH, Schwartz BF (2016) Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities. Ecology 97:1530–1542

    Article  Google Scholar 

  • Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier Press, Amsterdam, pp 159–188

    Google Scholar 

  • Jones WK, Culver DC, Herman JS (eds) (2004) Epikarst. Proceedings of the symposium held October 1 through 4, 2003 Shepherdstown, West Virginia. Karst Waters Institute, Charles Town, West Virginia

    Google Scholar 

  • Juberthie C (2000) The diversity of the karstic and pseudokarstic hypogean habitats in the world. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier, Amsterdam, pp 17–40

    Google Scholar 

  • Juberthie C, Delay B, Bouillon M (1980) Sur l’existence d’un milieu souterrain superficiel en zone non calcaire. Compte Rendus de l’Académie des Sciences de Paris 290:49–52

    Google Scholar 

  • Keany JM, Christman MC, Milton M, Knee KL, Gilbert H, Culver DC (2018) Distribution and structure of shallow subterranean aquatic arthropod communities in the parklands of Washington, DC. Ecohydrology 12:e2044

    Google Scholar 

  • Kenk R (1972) Freshwater planarians (Turbellaria) of North America. Biota of freshwater ecosystems identification manual No. 1, Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Klimchouk A (2017) Types and settings of hypogene karst. In: Klimchouk A, Palmer AN, De Waele J, Auler AS, Audra P (eds) Hypogene karst regions and caves of the world. Springer, Cham, pp 1–39

    Chapter  Google Scholar 

  • Krause S, Hannah DM, Fleckenstein JH, Heppell CM, Kaeser D, Pickup R, Pinay G, Robertson AL, Wood PJ (2011) Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology 4:481–499

    Article  Google Scholar 

  • Kresic N (2013) Water in karst. Management, vulnerability, and restoration. McGraw-Hill, New York, p 736

    Google Scholar 

  • Leijs R, Roudnew B, Mitchell J, Humphreys WF (2009) A new method for sampling stygofauna from groundwater fed marshes. Speleobiol Notes 1:12–13

    Google Scholar 

  • Leijs R, van Nes EH, Watts CH, Cooper SJB, Humphreys WF, Hogendoorn K (2012) Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation. PLoS ONE 7:e34260

    Article  Google Scholar 

  • Leys R, Watts CHS, Cooper SJB, Humphreys WF (2003) Evolution of subterranean diving beetles (Coleoptera, Dytiscidae, Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834

    Google Scholar 

  • Longley G (1981) The Edwards aquifer: the most groundwater ecosystem? Int J Speleol 11:123–128

    Article  Google Scholar 

  • López H, Oromí P (2010) A pitfall trap for sampling the mesovoid shallow substratum (MSS) fauna. Speleobiol Notes 2:7–11

    Google Scholar 

  • Lučić I, Sket B (2003) Vjetrenica, ArTresor, Zagreb, p 322

    Google Scholar 

  • Luštrik R, Turjak M, Kralj-Fišer S, Fišer C (2011) Coexistence of surface and cave amphipods in an ecotone environment. Contrib Zool 80:133–141

    Article  Google Scholar 

  • Malard F, Gibert J, Laurent R, Reygrobellet JL (1994) A new method for sampling the fauna of deep karstic aquifers. Comptes Rendus Acad Sci 317:955–966

    Google Scholar 

  • Malard F, Ward JV, Robinson CT (2000) An expanded perspective of the hyporheic zone. Verhaltungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27:431–437

    Google Scholar 

  • Malard F, Tockner K, Dole-Oliver MJ, Ward JV (2002) A landscape perspective of surface-subsurface hydrological exchange in river corridors. Freshw Biol 47:621–640

    Article  Google Scholar 

  • Malard F, Galassi D, Lafont M, Dolédec S, Ward JV (2003) Longitudinal patterns of invertebrates in the hyporheic zones of a glacial river. Freshw Biol 48:1709–1725

    Article  Google Scholar 

  • Mammola S, Giachino PM, Piano E, Jones A, Barberis M, Badino G, Isaia M (2016) Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). Sci Nat 103:88

    Article  Google Scholar 

  • Mangin A (1973) Sur la dynamique des transferts en aquifer karstique. Proc Sixth Int Congr Speleol, Olomouc 4:157–162

    Google Scholar 

  • Mann AW, Horwitz RC (1979) Groundwater calcrete deposits in Australia: some observations from Western Australia. J Geol Soc Aust 26:293–303

    Article  Google Scholar 

  • Medina AL, Oromí P (1990) First data on the superficial underground compartment in La Gomera (Canary Islands). Mémoires de Biospéologie 17:87–91

    Google Scholar 

  • Medville DM (2009) Hualalai, island of Hawai’i. In: Palmer AN, Palmer MV (eds) Caves and karst of the United States. National Speleological Society, Huntsville, Alabama, pp 315–317

    Google Scholar 

  • Mejía-Ortíz LM, Pipan T, Culver DC, Sprouse P (2018) The blurred line between photic and aphotic environments: a large Mexican cave with almost no dark zone. Int J Speleol 37:69–80

    Article  Google Scholar 

  • Meleg IN, Moldovan OT, Iepure S, Fiers F, Brad T (2011) Diversity patterns of fauna in dripping water of caves from Transylvania. Ann Limnol/Int J Limnol 47:185–197

    Article  Google Scholar 

  • Meštrov M (1962) Un nouveau milieu aquatique souterrain: le biotope hypotelminorheique. Com Rend Acad Sci 254:2677–2679

    Google Scholar 

  • Meštrov M (1964) Différences et relations faunistiques et écologiques entre les milieu souterrains aquatiques. Spelunca Mémoires 4:185–187

    Google Scholar 

  • Morgan KH (1993) Development, sedimentation and economic potential of palaeoriver systems of the Yilgarn Craton of Western Australia. Sed Geol 85:637–656

    Article  Google Scholar 

  • Niemiller ML, Porter ML, Keany J, Gilbert H, Culver DC, Fong DW, Hobson CS, Kendall KD, Taylor SJ (2017) Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae). Conserv Genet Methods. https://doi.org/10.1007/s12686-017-0785-2

    Article  Google Scholar 

  • Orghidan T (1959) Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop. Archiv für Hydrobiologie 55:392–414

    Google Scholar 

  • Oromí P, Martín JL (1992) The Canary Islands. Subterranean fauna: characterization and composition. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional Ciencias Naturales, Madrid, Spain, pp 527–567

    Google Scholar 

  • Ortuño VM, Gilgado JD, Jiménez-Valverde A, Sendra A, Pérez-Suárez G, Herrero-Borgoñón JJ (2013) The “alluvial mesovoid shallow substratum”, a new subterranean habitat. PLoS ONE 8:e76311

    Article  Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books, Dayton, Ohio, p 454

    Google Scholar 

  • Palmer AN (2012) Passage growth and development. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Elsevier/Academic Press, Amsterdam, pp 598–603

    Chapter  Google Scholar 

  • Papi F (2016) Ecological studies of epikarst communities in Alpine and pre-Alpine caves. Ph.D. Dissertation, University of Nova Gorica, Slovenia

    Google Scholar 

  • Parker CW, Wolf JA, Auler AS, Barton HA, Senko JM (2013) Microbial reducibility of Fe (III) phases associated with the genesis of iron ore caves in the Iron Quadrangle, Minas Gerais, Brazil. Minerals 3:95–411

    Article  Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Berlin, p 445

    Google Scholar 

  • Pipan T (2005) Epikarst—a promising habitat. Založba ZRC, Ljubljana, Slovenia

    Google Scholar 

  • Pipan T, Culver DC (2007) Regional species richness in an obligate subterranean dwelling fauna—epikarst copepods. J Biogeogr 34:854–861

    Article  Google Scholar 

  • Pipan T, Culver DC (2012a) Convergence and divergence in the subterranean realm: a reassessment. Biol J Lin Soc 107:1–14

    Article  Google Scholar 

  • Pipan T, Culver DC (2012b) Shallow subterranean habitats. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic/Elsevier Press, Amsterdam, The Netherlands, pp 683–690

    Chapter  Google Scholar 

  • Pipan T, Culver DC (2013) Organic carbon in shallow subterranean habitats. Acta Carsolog 42:291–300

    Article  Google Scholar 

  • Pipan T, Culver DC (2017) The unity and diversity of the subterranean realm with respect to invertebrate body size. J Cave Karst Stud 79:1–9

    Article  Google Scholar 

  • Pipan T, Christman MC, Culver DC (2006) Dynamics of epikarst communities: microgeographic pattern and environmental determinants of epikarst copepods in Organ cave, West Virginia. Am Midl Nat 156:75–87

    Article  Google Scholar 

  • Pipan T, Navodnik V, Janžekovič F, Novak T (2008) First studies on the fauna of percolation water in Huda luknja, a cave in the isolated karst in northeast Slovenia. Acta Carsolog 37:141–151

    Article  Google Scholar 

  • Pipan T, Holt N, Culver DC (2010) How to protect a diverse, poorly known, inaccessible fauna: identification of source and sink habitats in the epikarst. Aquat Conserv: Mar Freshw Ecosyst 20:748–755

    Article  Google Scholar 

  • Pipan T, López H, Oromí P, Polak S, Culver DC (2011) Temperature variation and the presence of troglobionts in shallow subterranean habitats. J Nat Hist 45:253–273

    Article  Google Scholar 

  • Pipan T, Fišer CT, Novak T, Culver DC (2012) Fifty years of the hypotelminorheic: what have we learned? Acta Carsolog 42:275–285

    Google Scholar 

  • Pipan T, Culver DC, Papi F, Kozel P (2018) Partitioning diversity in subterranean invertebrates: the epikarst fauna of Slovenia. PLoS ONE 13:e0185991

    Article  Google Scholar 

  • Por FD, Dimentman C, Frumkin A, Naaman I (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): a summing up. Nat Sci 5:7–13

    Article  Google Scholar 

  • Pospisil P (1994) The groundwater fauna of a Danube aquifer in the wetland Lobau at Vienna, Austria. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier Press, Amsterdam, The Netherlands, pp 347–366

    Google Scholar 

  • Racoviţă EG (1907) Essai sur les problèmes biospéologiques. Archives de Zoologie Expérimentale et Générale 6:371–488

    Google Scholar 

  • Ribera I, Cieslak A, Faille A, Fresneda J (2018) Historical and ecological factors determining cave diversity. In: Moldovan OT, Kovač L, Halse S (eds) Cave Ecology. Springer, Cham, Switzerland, pp 229–252

    Chapter  Google Scholar 

  • Rodrigues S, Bueno A, Ferreira R (2012) The first hypothelminorheic Crustacea (Amphipoda, Dogielinotidae, Hyalella) from South America. ZooKeys 236:65

    Article  Google Scholar 

  • Růžička V (1982) Modifications to improve the efficiency of pitfall traps. Newsl Br Arachnol Soc 34:2–4

    Google Scholar 

  • Růžička V (1988) The longtimely exposed rock debris pitfalls. Věstník Československé Společnosti Zoologické 52:238–240

    Google Scholar 

  • Růžička V (1990) The spiders of stony debris. Acta Zoologica Fennica 190:333–337

    Google Scholar 

  • Scheller U (1986) Symphyla from the United States and Mexico. Speleological Monograph 1, Texas Memorial Museum, pp 87–125

    Google Scholar 

  • Sendra A, Garay P, Ortuño VM, Gilgado JD, Teruel S, Reboleira ASP (2014) Hypogenic versus epigenic subterranean ecosystem: lessons from eastern Iberian Peninsula. Int J Speleol 43:253–264

    Article  Google Scholar 

  • Shaw T (1992) The history of cave science. The exploration and study of limestone caves, to 1900, Second Edition, Broadway, New South Wales, Australia, p 338

    Google Scholar 

  • Simões HS, Souza-Silva M, Ferreira RL (2015) Cave physical attributes influencing the structure of terrestrial invertebrate communities in Neotropics. Subterranean Biology 16:103–121

    Article  Google Scholar 

  • Sket B (2004) Subterranean habitats. In: Gunn J (ed) Encyclopedia of cave and karst science. Fitzroy-Dearborn, New York, pp 709–713

    Google Scholar 

  • Sket B (2006) An essay about the essai. Un homage à Emil Racoviţă. In: Moldovan OT (ed) Emil George Racovitza. Essay on biospeological problems—French, English, Romanian versions. Casa Cărţii de Ştiinţă, Cluj-Napoca, Romania

    Google Scholar 

  • Souza-Silva M, Martins RP, Ferreira RL (2011) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodivers Conserv 20:1713–1729

    Article  Google Scholar 

  • Staley AW (2016) Hydrogeological investigation of springs that support endangered amphipods using direct-current resistivity methods. Administrative Report 16-02-05. Maryland Geological Survey, Annapolis

    Google Scholar 

  • Stanford JA, Gaufin AR (1974) Hyporheic communities of two Montana Rivers. Science 185(4152):700–702

    Article  Google Scholar 

  • Trontelj P, Douady CJ, Fišer C, Gibert J, Gorički Š, Lefébure C, Sket B, Zakšek V (2009) A molecular test for cryptic diversity in groundwater: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744

    Article  Google Scholar 

  • Ueno SI (1977) The biospeleological importance of non-calcareous caves. In: Ford TD (ed) Proceedings of the 7th international speleological congress Sheffield, England. British Cave Research Association, Somerset, England, pp 407–408

    Google Scholar 

  • Vergnon R, Leijs R, van Nes EG, Scheffer M (2013) Repeated parallel evolution reveals limiting similarity in subterranean diving beetles. Am Nat 182:67–75

    Article  Google Scholar 

  • Vervier P, Gibert J, Marmonier P, Dole-Olivier M-J (1992) A perspective on the permeability of the surface freshwater-groundwater ecotone. J N Amn Benthol Soc 11:93–102

    Article  Google Scholar 

  • Vignoli V, Prendini L (2009) Systematic revision of the troglomorphic North American scorpion family Typhlochactidae (Scorpiones: Charctoidea). Bull Am Mus Nat Hist 326:1–94

    Article  Google Scholar 

  • Wessel A, Hoch H, Asche M, von Rintelen T, Stelbrink B, Heck U, Stone FD, Howarth FG (2013) Founder effects initiated rapid species radiation in Hawaiian cave planthoppers. Proc Natl Acad Sci (USA) 110:9391–9396

    Article  Google Scholar 

  • White WB, Culver DC (2019) Cave, definition of. In: White WB, Culver DC, Pipan T (eds) Encyclopedia of caves, 3rd edn. Academic/Elsevier Press, Amsterdam, The Netherlands, pp 255–259

    Google Scholar 

  • White WB, Culver DC, Pipan T (eds) (2019) Encyclopedia of caves, 3rd edn. Academic/Elsevier Press, Amsterdam, The Netherlands

    Google Scholar 

  • Wilkens H, Strecker U (2017) Evolution in the dark: Darwin’s loss without selection. Springer, Cham, Switzerland, p 223

    Google Scholar 

  • Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61(1–3):45–67

    Article  Google Scholar 

  • Williams PW (2008a) World heritage caves and karst: a thematic study. IUCN World Heritage Studies, Gland, Switzerland, p 57

    Google Scholar 

  • Williams PW (2008b) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Knez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blatnik, M. et al. (2020). Changing Perspectives on Subterranean Habitats. In: Knez, M., Otoničar, B., Petrič, M., Pipan, T., Slabe, T. (eds) Karstology in the Classical Karst. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-030-26827-5_10

Download citation

Publish with us

Policies and ethics