Skip to main content

Subterranean Biodiversity in Ferruginous Landscapes

  • Chapter
  • First Online:
Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

The iron ore formations and their caves are among the most unknown ecosystems in the world. These formations of Cambrian rocks cover at least 5% of the Earth’s surface and occur in spots distributed mainly in Brazil, Australia, India, and South Africa. In Brazil, the two largest ferruginous formations, Carajás and Iron Quadrangle, present distinct speleological, ecological, and biological traits. However, the caves share some features, such as their advanced age, occurrence relatively close to the surface, and their connection to several small-interconnected voids in the canga formation. The ecological and evolutionary importance of the ferruginous voids is expressed in the great diversity of fauna they harbor, including relict and endemic species, many of them troglobites. In addition, the underground biodiversity in these ecosystems is greater than that observed in other lithologies in Brazil. However, despite this uniqueness, these ecosystems have been threatened by anthropic activities of mineral exploration and urban expansion, requiring studies and emergency conservation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arima E, Barreto P, Brito M (2005) Pecuária na Amazônia: tendências e implicações para a conservação ambiental. Instituto do Homem e Meio Ambiente da Amazônia. Belé, Imazon, Belém

    Google Scholar 

  • Asenjo A, Zampaulo R d A, Ferreira RL (2018) Two new troglobitic species of Oxarthrius Reitter (Coleoptera, Staphylinidae, Pselaphinae) from Brazil. Zootaxa 4462(3):404

    Article  Google Scholar 

  • Auler AS, Piló LB (2005) Introdução às Cavernas de Minério de Ferro e Canga. O Carste 17:70–72

    Google Scholar 

  • Auler A, Pilo LB, Parker CW et al (2014) Hypogene cave patterns in iron ore caves: convergence of forms or processes? vol 18. Karst Waters Institute, Leesburg, pp 15–19

    Google Scholar 

  • Brescovit AD, Sánchez-Ruiz A (2016) Descriptions of two new genera of the spider family Caponiidae (Arachnida, Araneae) and an update of Tisentnops and Taintnops from Brazil and Chile. Zookeys 622:47–84

    Article  Google Scholar 

  • Costa ML (1993) Gold distribution in lateritic profiles in South America, Africa, and Australia: applications to geochemical exploration in tropical regions. J Geochem Expl 47:143–163

    Article  Google Scholar 

  • Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Eberhard SM, Halse SA, Williams MR et al (2009) Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshw Biol 54:885–901

    Article  CAS  Google Scholar 

  • Ferreira RL (2005) A vida subterrânea nos campos ferruginosos. O Carste 3:106–115

    Google Scholar 

  • Ferreira LV, Venticinque E, Almeida S (2005) O desmatamento na Amazônia e a importância das áreas protegidas. Estud Avançados 19

    Google Scholar 

  • Ferreira RL, Oliveira MPA, Souza-Silva M (2015) Biodiversidade subterrânea em geossistemas ferruginosos. In: do Carmo FF, Kamino LHY (eds) Geossistemas Ferruginosos do Brasil. Belo Horizonte, Brasil (www.institutopristino.org.br), pp 195–231

  • Gama EM, Matias GP (2015) Hidrogeologia e os Geossistemas Ferruginosos. In: Carmo FF, Kamino LHY (eds) Geossistemas Ferruginosos do Brasil, vol 1. Instituto Prístino. Belo Horizonte, pp 103–124

    Google Scholar 

  • Gibson N, Coates D, Van Leeuwen S et al (2015) Hot, dry and ancient: banded iron formations of Western Australia. In: do Carmo FF, Kamino LHY (eds) Geossistemas Ferruginosos do Brasil. Belo Horizonte, Brasil, pp 361–391

    Google Scholar 

  • Giupponi APL, de Miranda GS (2016) Eight new species of Charinus Simon, 1892 (Arachnida: Amblypygi: Charinidae) endemic for the Brazilian Amazon, with notes on their conservational status. PLoS One 11:e0148277

    Article  Google Scholar 

  • Guzik MT, Austin AD, Cooper SJB et al (2011) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418

    Article  Google Scholar 

  • Halse SA, Pearson GB (2014) Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterr Biol 13:17–34

    Article  Google Scholar 

  • Halse SA, Scanlon MD, Cocking JS, Barron HJ, Richardson JB, Eberhard SM (2014) Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Rec W Aust Mus Suppl 78:443–483

    Article  Google Scholar 

  • Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. J Anim Ecol 61:151–158

    Article  Google Scholar 

  • Jacobi CM, Carmo FF (2008) Diversidade dos campos rupestres ferruginosos no Quadrilátero Ferrífero, MG. Megadiversidade 4:24–32

    Google Scholar 

  • Jacobi CM, Carmo FF, Vicent RC et al (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiv Conserv 16:2185–2200

    Article  Google Scholar 

  • Jaffé R, Prous X, Zampaulo R et al (2016) Reconciling mining with the conservation of cave biodiversity: a quantitative baseline to help establish conservation priorities. PLoS One 11:e0168348

    Article  Google Scholar 

  • McKenzie NL, Burbidge AA, Baynes A et al (2006) Analysis of factors implicated in the recent decline of Australia’s mammalian fauna. J Biogeogr 34:597–611

    Article  Google Scholar 

  • Mourão MAA (2007) Caracterização hidrogeológica do Aquífero Cauê, Quadrilátero Ferrífero, MG. Tese de Doutorado. Universidade Federal de Minas Gerais/Escola de Engenharia, Belo Horizonte

    Google Scholar 

  • Ollier CD, Galloway RW (1990) The laterite profile, ferricrete and unconformity. Catena 17:97–109

    Article  Google Scholar 

  • Parker CW, Wolf JA, Auler AS et al (2013) Microbial reducibility of Fe (III) phases associated with the Iron Quadrangle, Minas Gerais, Brazil. Minerals 3:395–411

    Article  Google Scholar 

  • Piló LB, Auler AS, Martins F (2015) Carajás national forest: iron ore plateaus and caves in Southeastern Amazon. In: Vieira BC, Salgado AAR, dos Santos LJC (eds) Landscapes and Landforms of Brazil. Springer, Dordrecht, pp 273–283

    Google Scholar 

  • Porto MFS (2016) The tragedy of mining and development in Brazil: public health challenges. Perspectives. Cad. Saúde Pública, Rio de Janeiro 32:e00211015

    Google Scholar 

  • Salgado AAR, Carmo FF (2015) ‘Quadrilátero Ferrífero’: a beautiful and neglected landscape between the gold and iron ore reservoirs. In: Vieira BC, Salgado AAR, dos Santos LJC (eds) Landscapes and landforms of Brazil. Springer, Dordrecht, pp 319–330

    Google Scholar 

  • Schuster DL, Farley KA, Vasconcelos PM et al (2012) Cosmogenic 3He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces. Earth Planet Sci Lett 329–330:41–50

    Article  Google Scholar 

  • Simões MH, Souza-Silva M, Ferreira RL (2015) Cave physical attributes influencing the structure of terrestrial invertebrate communities in Neotropics. Subterr Biol 16:103–121

    Article  Google Scholar 

  • Souza MF, Ferreira RL (2018) Pandora is on Earth: new species of Eukoenenia (Palpigradi) emerging at risk of extinction. Invertebr Syst 32(3):581–604

    Google Scholar 

  • Souza-Silva M, Martins RP, Ferreira RL (2011) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodiv Conserv 20:1713–1729

    Article  Google Scholar 

  • Veado MARV, Arantes IA, Oliveira AH et al (2006) Metal pollution in the environment of Minas Gerais State, Brazil. Environ Monit Assess 117:157–172

    Article  CAS  Google Scholar 

  • Veríssimo A, Barreto P, Mattos M et al (1996) Impactos da atividade madeireira e perspectivas para o manejo sustentável da floresta numa velha fronteira da Amazônia: o caso Paragominas. In: Barros AC, Verissimo A (eds) A expansão da atividade madeireira na Amazônia: impactos e perspectivas para o desenvolvimento do setor florestal no Pará. Belém, Imazon, pp 47–73

    Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Yoemans J, Bowater D (2016) One year on, Brazil battles to rebuild after the Samarco mining disaster. Telegraph. http://www.telegraph.co.uk/business/2016/10/15/one-year-on-brazil-battles-to-rebuild-after-the-samarco-mining-d/. Retrieved 15 Oct 2017

  • Zeppelini D, Oliveira JV (2016) Chaetotaxy of Neotropical Cyphoderus caetetus sp. nov. with comments on the taxonomic position of Cyphoderinae within Paronellidae (Collembola, Entomobryoidea). Zootaxa 4098:560–570

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ana Clara Moreira Viana for producing the figure regarding the schematic profile of the ferruginous habitats. We are also thankful to the whole team of the Center of Studies on Subterranean Biology from the Federal University of Lavras for their assistance in several field works in ferrugineous caves. We are finally grateful to all institutions that supported distinct research projects regarding ferrugineous cave fauna, providing funds, scholarships, and infrastructure (CNPq—Conselho Nacional de Desenvolvimento Cientifico e Tecnológico; FAPEMIG—Fundação de Amparo à Pesquisa do Estado de Minas Gerais; CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; CECAV—Centro Nacional de Pesquisa e Conservação de Cavernas; UFLA—Universidade Federal de Lavras and VALE company).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Lopes Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, R.L., de Oliveira, M.P.A., Silva, M.S. (2018). Subterranean Biodiversity in Ferruginous Landscapes. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_21

Download citation

Publish with us

Policies and ethics