Skip to main content
  • 820 Accesses

Abstract

Pathogenesis of cerebral oedema is considered. We also consider the various therapeutic measures available: mannitol, glycerol, dihydroxyacetone, hypertonic saline solution, barbiturate coma, cortisones, citicoline. An original technique of infusion via the carotid artery is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The brain cells do not require insulin, but the rest of the body’s cells do. In post-traumatic conditions, in the wide sense, increasing of catecholamines into circulation creates a pseudo-diabetic situation (due to activation of glucose-6 phosphatase), which should not be aggravated.

References

  1. Berman IR, Rogers LA. Cerebral acidosis following increased intracranial pressure. Surg Gynecol Obstet. 1970;130:483.

    CAS  PubMed  Google Scholar 

  2. Bachelard HS, Lewis LD, Ponten O, Siesjo BK. Mechanism activating glycolysis in the brain in arterial hypoxia. J Neurosurg. 1974;22:395.

    CAS  Google Scholar 

  3. Moruzzi G, Rossi CA, Rabbi A. Principi di Chimica biologica. VIII ed. Bologna: Tinarelli Editore; 1984. p. 418.

    Google Scholar 

  4. Alemanno F, Mayr O, Ragagni M, De Giorgi G. Edema cerebrale: la terapia osmotica nelle pratica clinica. Minerva Anestesiol. 1992;58(Suppl 1):239.

    CAS  PubMed  Google Scholar 

  5. Ghelli F. Miglioramento della resistenza allo stress idrico in piante geneticamente modificate. Padua University, Faculty of Sciences MM.FF.NN, Department of Biology, First degree thesis in Biotechnology; 2007.

    Google Scholar 

  6. Biestro A, et al. Osmotherapy for increased intracranial pressure: comparison between mannitol and glycerol. Acta Neurochir. 1997;139:725.

    Article  CAS  PubMed  Google Scholar 

  7. Torelli L. Le dihydroxyacetone dans le traitment de l’oedéme cerebral. Agressologie. 1969;10:177.

    CAS  PubMed  Google Scholar 

  8. Laborit H, Weber B, Ornellas MR, Baron C. Etude Pharmacologique de la dihydroxyacetone. Consequences therapeutiques. Agressologie. 1966;7(6):581.

    CAS  PubMed  Google Scholar 

  9. Torelli L, Vindigni G. Il diidrossiacetone endovenoso come antiedema cerebrale. Acta Anaesth It. 1968;XIX:1241.

    Google Scholar 

  10. Alemanno F, Busato G, Porati U. Il diidrossiacetone per infusione endocarotidea nel trattamento dell’edema cerebrale. Acta Anaesth It. 1972;XXIII(4):283.

    Google Scholar 

  11. Serra I, Alberghina M, Viola M, Giuffrida AM. Effect of hypoxia on nucleic acid and protein synthesis in different brain regions. Neurochem Res. 1981;6(5):595.

    Article  CAS  PubMed  Google Scholar 

  12. Serra I, Alberghina M, Viola M, Mistretta A, Giuffrida AM. Effect of CDP-choline on the biosynthesis of nucleic acids and proteins in brain regions during hypoxia. Neurochem Res. 1981;6(6):607.

    Article  CAS  PubMed  Google Scholar 

  13. Petkov VD, Mosharrof AH, Kehayov R, Petkov VV, Konstantinova E, Getova D. Effect of CDP-choline on learning and memory processes in rodents. Methods Find Exp Clin Pharmacol. 1992;14(8):593.

    CAS  PubMed  Google Scholar 

  14. Hazama T, Hasegawa T, Ueda S, Sakuma A. Evaluation of the effect of CDP-choline on poststroke hemiplegia employing a double-blind controlled trial. Assessed by a new rating scale for recovery in hemiplegia. Int J Neurosci. 1980;11(3):211.

    Article  CAS  PubMed  Google Scholar 

  15. Prough DS, Johnson JC, et al. Effects of hypertonic saline versus lactated Ringer’s solution on cerebral oxygen transport during resuscitation from hemorrhagic shock. J Neurosurg. 1986;64:627.

    Article  CAS  PubMed  Google Scholar 

  16. Gunnar V, Jonasson O, et al. Head injury and hemorragic shock: studies of the blood-brain barrier and intracranial pressure after resuscitation with normal saline solution, 3% saline solution and dextrane-40. Surgery. 1988;103:398.

    CAS  PubMed  Google Scholar 

  17. Vassar MJ, Perry CA, Holcroft JW. Analysis of potential risks associated with 7.5 % sodium chloride resuscitation of traumatic shock. Arch Surg. 1990;125:1309.

    Article  CAS  PubMed  Google Scholar 

  18. Vassar MJ, Perry CA, Gannaway WL, Holcroft JW. 7.5 % sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg. 1991;126:1065.

    Article  CAS  PubMed  Google Scholar 

  19. Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neur Surg Anesth. 1992;4:4.

    Article  CAS  Google Scholar 

  20. Vasile B, Rasulo F, Candiani A, Latronico N. La fisiopatologia della sindrome da infusione di propofol: un nome semplice per una sindrome complessa. Intensive Care Med. 2003;1:1.

    Google Scholar 

  21. Parke TJ, Stevens JE, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five reports. BMJ. 1992;305:613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robert I, Schierhout G, Alderson P. Absence of evidence for the effectiveness of five interventions routinely used in the intensive care management of severe head injury: a systematic review. J Neurol Neurosurg Psychiatry. 1998;65:729.

    Article  Google Scholar 

  23. Papadopulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22:778.

    Article  Google Scholar 

  24. Lecture APN. Aquaporin water channels. Biosci Rep. 2004;24:127.

    Article  CAS  Google Scholar 

  25. Shakur H, Andrews P, et al. The Brain Trial: a randomized placebo controlled of a bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury. Trials. 2009;10:109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Von Euler US, Gaddum JH. An unidentified depressor substance in certain tissue extracts. J Physiol. 1931;72(1):74.

    Article  Google Scholar 

  27. Saria A. Substance P in sensory nerve fibres contributes to the development of oedema in the rat hind paw after termal injury. Br J Pharmacol. 1984;82:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yonehara N, Shibutani T, Inoki R. Contribution of substance P to heat-induced edema in rat paw. J Pharmacol Exp Ther. 1987;242(3):1071.

    CAS  PubMed  Google Scholar 

  29. Nimmo AJ, Cernak I, Hath DL, Hu X, Bennett CJ, Vink R. Neurogenic inflammation is associated with development of edema and functional deficits following traumatic brain injury in rats. Neuropeptides. 2004;38:40.

    Article  CAS  PubMed  Google Scholar 

  30. Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(8):1388.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Bachelard HS. Specificity and kinetic properties of monosaccharide uptake into guinea-pig cerebral cortex in vitro. J Neuorochem. 1971;18:213.

    Article  CAS  Google Scholar 

  • Becker DP, Vries JK. The alleviation of increased intracranial pressure by chronic administration of osmotic agents. In: Brock M, Dietz H, editors. Intracranial pressure: experimental and clinical aspects. Berlin: Springer; 1972.

    Google Scholar 

  • Brain Trauma Foundation. Guidelines for the management of severe head injury. Baltimore: Brain Trauma Foundation; 1995.

    Google Scholar 

  • Diaz R, et al. Glucose-insulin-potassium therapy in patients with ST-segment elevation myocardial infarction. JAMA. 2007;298(20):2399.

    Article  CAS  PubMed  Google Scholar 

  • Klatzo I. Pathophysiological aspects of brain edema. Acta Neuropathol. 1987;72(3):236.

    Article  CAS  PubMed  Google Scholar 

  • Laborit H. Les Régulations Métaboliques. Paris: Masson & Cie; 1965. p. 470.

    Google Scholar 

  • Muizelaar JP, Lutz HA, Becker DP. Effect of mannitol on ICP and CBF correlation with pressure autoregolation in severely head impairments patients. J Neurosurg. 1984;61:700.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama S, Sibley L, et al. Small volume resuscitation with hypertonic saline during hemorragic shock. Circ Shock. 1984;13:149.

    CAS  PubMed  Google Scholar 

  • Pittis L, et al. Icp outcome in patients with severe head injury. In: Shulman K, Marmarou A, et al., editors. Intracranial pressure. Berlin: Springer; 1980.

    Google Scholar 

  • Ranzini M, et al. Farmaci anti-edemigeni e mortalità a breve termine in pazienti anziani con ictus ischemico in fase acuta. G Gerontol. 2006;LIV:96.

    Google Scholar 

  • Rosner MJ, Coley I. Cerebral perfusion pressure: a hemodynamic mechanism of mannitolo and the postmannitol hemogram. Neurosurgery. 1987;21:147.

    Article  CAS  PubMed  Google Scholar 

  • Schulz J, Plesnila N, et al. LF16-0687 a novel non-peptide bradykinin B2 receptor antagonist reduces vasogenic brain edema from a focal lesion in rats. Acta Neurochir Suppl. 2000;76:137.

    CAS  PubMed  Google Scholar 

  • Pallares S, et al. Effects of intravenous infusion of a potassium-glucose-insulin on the electocardiographic signs of myocardial infarction. Am J Cardiol. 1962;9:166.

    Article  Google Scholar 

  • Pallares S, et al. The polarizing treatment for myocardial infarction. Am J Cardiol. 1969;24:607.

    Article  Google Scholar 

  • Takagi H, Saito T, Kitahara T, Mrii S, Ohwada T. Yada. The mechanism of ICP reducing effect of mannitol. In: Ishii S, Nagai H, Brock M, editors. Intracranial pressure. Berlin: Springer; 1983.

    Google Scholar 

  • Towler PK, Bennett GS, Moore PK, Brain SD. Neurogenic oedema and vasoldilation: effect of a selective neuronal NO inhibitor. Neuroreport. 1998;9:1513.

    Article  CAS  PubMed  Google Scholar 

  • Varriale L. RNA interference. http://www.molecularlab.it

  • Velasco IT, et al. Hyperosmotic NaCl and severe hemorrhagic shock. Am J Phisiol. 1980;239:664.

    Google Scholar 

  • Zweckberger K, Plesnila N. Anatibant, a selective non-peptide bradykinin B2 receptor antagonist, reduces intracranial hypertension and histopathological damage after experimental traumatic brain injury. Neurosci Lett. 2009;454(2):115–7. https://doi.org/10.1016/j.neulet.2009.02.014. Epub 2009 Feb 11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Alemanno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alemanno, F. (2020). Cerebral Oedema. In: Alemanno, F. (eds) Biochemistry for Anesthesiologists and Intensivists. Springer, Cham. https://doi.org/10.1007/978-3-030-26721-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26721-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26720-9

  • Online ISBN: 978-3-030-26721-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics