Skip to main content
Log in

Effect of hypoxia on nucleic acid and protein synthesis in different brain regions

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberghina, M., andPalermo, F. 1974 Metabolism of lipids in cardiac muscle hypertrophied by severe hypoxia: The effect of diphosphothiamine and antagonist of vitamin B1. It. J. Biochem. 23:96.

    Google Scholar 

  2. Albrecht, J., andSmialek, M. 1975. Effect of hypoxia, ischemia and carbon monoxide intoxication on in vivo protein synthesis in neuron and glia cell enriched fractions from rat brain. Acta Neuropathol. 31:257.

    PubMed  Google Scholar 

  3. Austoker, J., Cox, D., andMathias, A. P. 1972. Fractionation of nuclei from brain by zonal centrifugation and a study of the ribonucleic acid polymerase activity in the various classes of nuclei. Biochem. J. 129:1139.

    PubMed  Google Scholar 

  4. Bakay, L., andLee, J. C. 1968. The effect of acute hypoxia and hypercapnia on the ultrastructure of the central nervous system. Brain 91:697.

    PubMed  Google Scholar 

  5. Benzi, G., Arrigoni, E., Dagani, F., Pastoris, O., Villa, R. F., andAgnoli, A. 1978. Cerebral energy state during or after hypoxia and complete or incomplete ischemia. J. Appl. Physiol. 45:312.

    PubMed  Google Scholar 

  6. Blomstrand, C. 1970. Effect of hypoxia on protein metabolism in neuron and neuroglia cell-enriched fractions from rabbit brain. Exp. Neurol. 29:175.

    PubMed  Google Scholar 

  7. Broniszewska-Ardelt, B., andSikorska, M. 1979. High-energy phosphate compounds and some glycolytic substrates in the rat brain during hypoxia. J. Neurosci. Res. 4:261.

    PubMed  Google Scholar 

  8. Cheek, D. B., Grayston, J. E., andRowe, R. D. 1969. Hypoxia and malnutrition in newborn rats: Effects on RNA, DNA and protein in tissues. Am. J. Physiol. 217:642.

    PubMed  Google Scholar 

  9. Cohen, M. M. 1973. Biochemistry of cerebral anoxia, hypoxia and ischemia. Monogr. Neural Sci. 1:1–49.

    PubMed  Google Scholar 

  10. Dell, P., Hugelin, A., andBonvallet, M. 1961.In Meyer, J. S., andGastaut, H. (eds.), Cerebral Anoxia and the Electroencephalogram, Thomas, Springfield, Illinois.

    Google Scholar 

  11. Eccles, R. M., Loyning, Y., andOshima, T. 1966. Effect of hypoxia on the monosynaptic reflex. J. Neurophysiol. 29:315.

    PubMed  Google Scholar 

  12. Gadaleta, M. N., Giuffrida, A. M., Renis, M., Serra, I., Del Prete, G., Geremia, E., andSaccone, C. 1979. Macromolecular synthesis in mitochondria isolated from different regions of developing rat brain. Neurochem. Res. 4:25.

    PubMed  Google Scholar 

  13. Giuffrida, A. M., Gadaleta, M. N., Serra, I., Renis, M., Geremia, E., Del Prete, G., andSaccone, C. 1979. Mitochondrial DNA, RNA and protein synthesis in different regions of developing rat brain. Neurochem. Res. 4:37.

    PubMed  Google Scholar 

  14. Giuffrida, A. M., Cox, D., andMathias, A. P. 1975. RNA polymerase activity in various classes of nuclei from different regions of rat brain during postnatal development. J. Neurochem. 24:749.

    PubMed  Google Scholar 

  15. Goldberg, M. A. 1971. Protein synthesis in isolated rat brain mitochondria and nerve endings. Brain Res. 27:319.

    PubMed  Google Scholar 

  16. Guroff, G., Hogans, A. F., andUdenfriend, S. 1968. Biosynthesis of RNA in rat brain slices. J. Neurochem. 15:489.

    PubMed  Google Scholar 

  17. Hamberger, A., andHyden, H. 1963. Inverse enzymatic changes in neurons and glia during increased function and hypoxia. J. Cell Biol. 16:521.

    PubMed  Google Scholar 

  18. Letendre, G. H., Nagaiah, K., andGuroff, G. 1980. Brain amino acids. Pages 343–382,in Kumar, S. (ed.), Biochemistry of Brain, Pergamon Press, London.

    Google Scholar 

  19. Levine, S. 1960. Anoxic-ischemic encephalopathy in rats. Am. J. Pathol. 36:1.

    PubMed  Google Scholar 

  20. MacDonnell, P., Huff, K., Grouse, L., andGuroff, G. 1980. Brain nucleic acids. Pages 211–240,in Kumar, S. (ed.), Biochemistry of Brain, Pergamon Press, London.

    Google Scholar 

  21. MacMillan, V., Salford, L. G., andSiesjo, B. K. 1976. Metabolic state and blood flow in rat cerebral cortex, cerebellum and brain stem in hypoxic hypoxia. Acta Physiol. Scand. 92:103.

    Google Scholar 

  22. Mandel, P. 1971. Free nucleotides. Pages 249–281,in Lajtha, A. (ed.) Handbook of Neurochemistry, Vol. 5A, Plenum Press, New York.

    Google Scholar 

  23. Massopust, L. C., Jr., Wohin, R. R., Kadoya, S., andWhite, R. J. 1969. The effect of hypoxia on electrocortical activity in the cebur monkey. Exp. Neurol. 25:116.

    PubMed  Google Scholar 

  24. McGee-Russel, S. M., Brown, A. W., andBrierley, J. B. 1970. A combined light and electron microscope study of early anoxic-ischaemic cell change in rat brain. Brain Res. 20:193.

    PubMed  Google Scholar 

  25. Metter, E. J., andYanagihara, T. 1979. Protein synthesis in rat brain in hypoxia, anoxia and hypoglycemia. Brain Res. 161:481.

    PubMed  Google Scholar 

  26. Mrsulja, B. B., Lust, W. D., Mrsulja, B. J., Passonneau, J. V., andKlatzo, I. 1976. Post-ischemic changes in certain metabolites following prolonged ischemia in the gerbil cerebral cortex. J. Neurochem. 26:1099.

    Google Scholar 

  27. Norberg, K., andSiesjo, B. K. 1975. Cerebral metabolism in hypoxia. I. Pattern of activation of glycolysis. A re-evaluation. Brain Res. 86:31.

    PubMed  Google Scholar 

  28. Palladini, G., Conforti, A., andMedolago-Albani, L. 1976. Ultrastuctural hypoxic changes in ammon's horn and Purkinje cells. Brain Res. 103:45.

    PubMed  Google Scholar 

  29. Rosenthal, M., Martel, D. L., andLa Manna, J. C. 1976. Effect of incomplete and complete ischemia on mitochondrial functioning measured in intact cerebral cortex of cats. Exp. Neurol. 52:433.

    Google Scholar 

  30. Rossowska, M., andZalewska, T. 1979. Effect of hypoxia and ischemia on the distribution of protein in brain cellular fractions. Neurochem. Res. 4:15.

    PubMed  Google Scholar 

  31. Sakurada, O., Kennedy, C., Yehle, J., Brown, J., Garbin, G., andSokoloff, L. 1978. Measurement of local cerebral blood flow with iodo-14C antipyrine. Am. J. Physiol. 234:H59.

    PubMed  Google Scholar 

  32. Sanders, A. P., Hale, D. M., andMiller, A. T., Jr. 1965. Some effects of hypoxia on respiratory metabolism and protein synthesis in rat tissues. Am. J. Physiol. 209:443.

    PubMed  Google Scholar 

  33. Schmidt, G., andTannhauser, S. J. 1945. A method for the determination of desoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. J. Biol. Chem. 161:83.

    Google Scholar 

  34. Smialek, M., andHamberger, A. 1970. The effect of moderate hypoxia and ischemia on cytochrome activity and protein synthesis in brain mitochondria. Brain Res. 17:369.

    PubMed  Google Scholar 

  35. Spector, R. G. 1963. Selective changes in dehydrogenase enzymes and pyridine nucleotides in rat brain in anoxic-ischemic encephalopathy. Br. Exp. Pathol. 44:312.

    Google Scholar 

  36. Webster, H. DeF., andAmes, A., III.. 1965. Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation. J. Cell Biol. 26:885.

    Google Scholar 

  37. Woolley, D. E., andTimiras, P. S. 1963. Changes in brain glycogen concentration in rats during high altitude (12,470 ft) exposure. Proc. Soc. Exp. Biol. Med. 114:571.

    PubMed  Google Scholar 

  38. Yanagihara, T. 1974. Cerebral anoxia: effect on transcription and translation. J. Neurochem. 22:113.

    PubMed  Google Scholar 

  39. Yanagihara, T. 1976. Cerebral anoxia: Effect on neuron-glia fractions and polysomal protein synthesis. J. Neurochem. 27:539.

    PubMed  Google Scholar 

  40. Yanagihara, T. 1978. Experimental stroke in gerbils: Effect on translation and transcription. Brain Res. 158:435.

    PubMed  Google Scholar 

  41. Wannemaker, R. W., Jr., Banks, W. L., Jr., andWunner, W. H. 1965. Use of a single tissue extract to determine cellular protein and nucleic acid concentrations and rate of amino acid incorporation. Anal. Biochem. 11:320.

    PubMed  Google Scholar 

  42. McIlwain, H., andBuddle, H. L. 1953. Techniques in tissue metabolism. 1. A mechanical chopper. Biochem. J. 53:412.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, I., Alberghina, M., Viola, M. et al. Effect of hypoxia on nucleic acid and protein synthesis in different brain regions. Neurochem Res 6, 595–605 (1981). https://doi.org/10.1007/BF00964396

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964396

Keywords

Navigation