Skip to main content

Synthesis of Novel Catalytic Materials: Titania Nanotubes and Transition Metal Carbides, Nitrides, and Sulfides

  • Chapter
  • First Online:
Advanced Catalytic Materials: Current Status and Future Progress

Abstract

The synthesis and catalytic application of novel catalytic materials such as inorganic nanotubes and transition metal carbides and nitrides have been discussed in this chapter. The overall forecast for new catalytic materials, their methods of synthesis to design innovative materials, as well as the comparison with physical or chemical traditional methods have been emphasized. Specifically, the general aspects concerning the titanate nanotubes, including their routes of preparation and their characterizations for the production of valuable chemical intermediates, are discussed. The catalytic application of these solids as catalysts or supported catalysts for polymerization, photocatalytic activity, anodization, Knoevenagel reaction, oxidation and reduction of methyl orange, Cannizzaro reaction, CO oxidation, hydroformylation of vinyl acetate, and phenol oxidation reactions has been discussed. In addition to these advances, the catalytic profile of transition metal carbides and nitrides as novel catalysts for hydrotreatment reactions is described, making emphasis in bulk and supported material characteristics. Finally, this chapter reviews some studies with model molecules and real feedstocks, mechanism of hydrogen activation and transfer, and relationships between their resistance to severe deactivation and high activity with their resemblance with noble metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wang, G. Cao, J. Domínguez, Advances in new catalytic materials, in Advanced Materials Research, ed. by J. Wang, G. Cao, J. Domínguez, (Trans Tech Publications, Stafa-Zurich, 2009), pp. 1–300

    Google Scholar 

  2. A. Corma, Preparation and catalytic properties of new mesoporous materials. Top. Catal. 4, 249–260 (1997)

    Article  Google Scholar 

  3. K. Wilson, A. Lee, M. Ecormier, D. Macquarrie, J. Clark, New catalytic materials for clean technology: structure-reactivity relationships in mesoporous solid acid catalysts, in Nanotechnology in Catalysis, ed. by B. Zhou, S. Hermans, G. Somorjai, vol. 1, (Springer, New York, 2004), pp. 293–312

    Chapter  Google Scholar 

  4. C. Pham-Huu, M.-J. Ledoux, Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials. Top. Catal. 40, 49–63 (2006)

    Article  CAS  Google Scholar 

  5. K. Wilson, A.F. Lee, M.A. Ecormier, D.J. Macquarrie, J.H. Clark, New Catalytic Materials for Clean Technology Structure-Reactivity Relationships in Mesoporous Solid Acid Catalysts, vol 1 (Kluwer Academic/Plenum, New York, 2004), pp. 293–312

    Google Scholar 

  6. G. Busca, Heterogeneous catalytic materials: solid state chemistry, surface chemistry and catalytic behaviour, in Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour, (Newnes, Oxford, 2014)

    Google Scholar 

  7. G.L. Haller, New catalytic concepts from new materials: understanding catalysis from a fundamental perspective, past, present, and future. J. Catal. 216, 12–22 (2003)

    Article  CAS  Google Scholar 

  8. G.A. Gonzalez, M. Alvarado, M.A. Ramos, G. Berhault, R.R. Chianelli, Transition states energies for catalytic hydrodesulfurization reaction in Co9S8/MoS2 theoretical interface using computer-assisted simulations. Comput. Mater. Sci. 121, 240–247 (2016)

    Article  CAS  Google Scholar 

  9. M. Ramos, G. Berhault, D.A. Ferrer, B. Torres, R.R. Chianelli, HRTEM and molecular modeling of the MoS2-Co9S8 interface: understanding the promotion effect in bulk HDS catalysts. Cat. Sci. Technol. 2, 164–178 (2012)

    Article  CAS  Google Scholar 

  10. M. Ramos et al., In-situ HRTEM study of the reactive carbide phase of Co/MoS2 catalyst. Ultramicroscopy 127, 64–69 (2013)

    Article  CAS  Google Scholar 

  11. I.V. Parvulescu, E. Kemnitz, in New Materials for Catalytic Applications, vol 1 (Elsevier Amsterdam 2016) pp. 1–386

    Chapter  Google Scholar 

  12. A. Tiwari, S. Titinchi, in Advanced Catalytic Materials, (Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusett 2015) pp. 1–446

    Google Scholar 

  13. ACS Publications. http://pubs.acs.org/action/doSearch?AllField=new+materials&target=default&targetTab=std&startPage=&dateRange=%3E. Accessed 20 May 2015

  14. W. Moser in Advanced Catalysts and Nanostructured Materials (Elsevier, Amsterdam 1996) pp. 1–596

    Chapter  Google Scholar 

  15. Y. Villasana et al., Atomic ratio effect on catalytic performance of FeW-based carbides and nitrides on thiophene hydrodesulfurization. Fuel 110, 259–267 (2013)

    Article  CAS  Google Scholar 

  16. Y. Villasana et al., Maya crude oil hydrotreating reaction in a batch reactor using alumina-supported NiMo carbide and nitride as catalysts. Catal. Today 220–222, 318–326 (2014)

    Article  CAS  Google Scholar 

  17. B. Dhandapani, T. St. Clair, S.T. Oyama, Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Appl. Catal. A Gen. 168, 219–228 (1998)

    Article  CAS  Google Scholar 

  18. J.M. Cameron, R.W. Hughes, Y. Zhao, D.H. Gregory, Ternary and higher pnictides; prospects for new materials and applications. Chem. Soc. Rev. 40, 4099–4118 (2011)

    Article  CAS  Google Scholar 

  19. L. Kőrösi, S. Papp, I. Dékány, Synthesis, structure, and photocatalytic activity of titanium dioxide and some of its surface-modified derivatives. L.Guczi, A. Erdôhely (eds). Catal. Altern. Energy Gener, 459–489 (2012). https://doi.org/10.1007/978-1-4614-0344-9

    Google Scholar 

  20. J.A. Schwarz, C. Contescu, A. Contescu, Methods for preparation of catalytic materials. Chem. Rev. 95, 477–510 (1995)

    Article  CAS  Google Scholar 

  21. J. Allouche, Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods, in Nanomaterials, (Springer, London, 2013). https://doi.org/10.1007/978-1-4471-4213-3

    Chapter  Google Scholar 

  22. B. Grzybowska-Swierkosz, J. Haber, Chapter 11. Catalysis. Annu. Rep. Sect. C 91, 395–439 (1994)

    Article  Google Scholar 

  23. F.F. de Sousa et al., Nanostructured Ni-containing spinel oxides for the dry reforming of methane: effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts. Int. J. Hydrog. Energy 37, 3201–3212 (2012)

    Article  CAS  Google Scholar 

  24. R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549 (1973)

    Article  CAS  Google Scholar 

  25. S.T. Oyama, Preparation and catalytic properties of transition metal carbides and nitrides. Catal. Today 15, 179–200 (1992)

    Article  CAS  Google Scholar 

  26. J. Ancheyta, M.S. Rana, E. Furimsky, Hydroprocessing of heavy petroleum feeds: Tutorial. Catal. Today 109, 3–15 (2005)

    Article  CAS  Google Scholar 

  27. J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009)

    Article  CAS  Google Scholar 

  28. A. Kafizas, C.J. Carmalt, I.P. Parkin, CVD and precursor chemistry of transition metal nitrides. Coord. Chem. Rev. 257, 2073–2119 (2013)

    Article  CAS  Google Scholar 

  29. M.S. Rana, J. Ancheyta, S.K. Maity, P. Rayo, Heavy crude oil hydroprocessing: a zeolite-based CoMo catalyst and its spent catalyst characterization. Catal. Today 130, 411–420 (2008)

    Article  CAS  Google Scholar 

  30. X. Song, E. Yang, R. Ma, H. Chen, Y. Zhao, Sodium dodecyl sulfate-assisted synthesis of CoWO4 nanorods. J. Nanopart. Res. 10, 709–713 (2008)

    Article  CAS  Google Scholar 

  31. D. Astruc, Transition-metal nanoparticles in catalysis: from historical background to the state-of-the art, in Nanoparticles and Catalysis, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), pp. 1–48. https://doi.org/10.1002/9783527621323.ch1

    Chapter  Google Scholar 

  32. R.D. Gonzalez, T. Lopez, R. Gomez, Sol–gel preparation of supported metal catalysts. Catal. Today 35, 293–317 (1997)

    Article  CAS  Google Scholar 

  33. D. Barkhuizen et al., Experimental approaches to the preparation of supported metal nanoparticles. Pure Appl. Chem. 78, 1759–1769 (2006)

    Article  CAS  Google Scholar 

  34. D.A. Ward, E.I. Ko, Preparing catalytic materials by the sol-gel method. Ind. Eng. Chem. Res. 34, 421–433 (1995)

    Article  CAS  Google Scholar 

  35. S. Li, J. Gong, Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem. Soc. Rev. 43, 7245–7256 (2014)

    Article  CAS  Google Scholar 

  36. K. Omata, H. Mazaki, H. Yagita, K. Fujimoto, Preparation of nickel-on-active carbon catalyst by CVD method for methanol carbonylation. Catal. Lett. 4, 123–127 (1990)

    Article  CAS  Google Scholar 

  37. A. Magrez, J.W. Seo, R. Smajda, M. Mionić, L. Forró, Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials (Basel) 3, 4871–4891 (2010)

    Article  CAS  Google Scholar 

  38. A.C. Oliveira, N. Essayem, A. Tuel, J.-M. Clacens, Y.B. Taarit, Studies on MeAPSO-5: an investigation of physicochemical and acidic properties. Catal. Today 133, 56–62 (2008)

    Article  CAS  Google Scholar 

  39. J. Livage, Sol–gel synthesis of heterogeneous catalysts from aqueous solutions. Catal. Today 41, 3–19 (1998)

    Article  CAS  Google Scholar 

  40. S. Tait, J. Tamis, B. Edgerton, D.J. Batstone, Anaerobic digestion of spent bedding from deep litter piggery housing. Bioresour. Technol. 100, 2210–2218 (2009)

    Article  CAS  Google Scholar 

  41. J. Geus, Production of supported catalysts by impregnation and (Viscous) drying, in Catalyst Preparation, (CRC Press, Boca Raton, 2006), pp. 341–372. https://doi.org/10.1201/9781420006506.ch15

    Chapter  Google Scholar 

  42. Z. Guo et al., Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43, 3480–3524 (2014)

    Article  CAS  Google Scholar 

  43. C.N.R. Rao, M. Nath, Inorganic nanotubes. Dalton Trans. 1–24, (2003). https://doi.org/10.1039/B208990B

    Article  Google Scholar 

  44. J. Haber, J.H. Block, B. Delmon, Manual of methods and procedures for catalyst characterization (Technical Report). Pure Appl. Chem. 67, 1257–1306 (1995)

    Article  Google Scholar 

  45. S.-Y. Lee, R. Aris, The distribution of active ingredients in supported catalysts prepared by impregnation. Catal. Rev. 27, 207–340 (1985)

    Article  CAS  Google Scholar 

  46. M. Behrens, Coprecipitation: an excellent tool for the synthesis of supported metal catalysts—from the understanding of the well-known recipes to new materials. Catal. Today 246, 46–54 (2015)

    Article  CAS  Google Scholar 

  47. M. Sunkara, M. Meyyappan, Inorganic nanowires: applications, properties, and characterization (CRC Press, Boca Raton, 2009). https://doi.org/10.1201/b13579-2

    Book  Google Scholar 

  48. R. Tenne, Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles. Front. Physiol. 9, 370–377 (2014)

    Article  Google Scholar 

  49. N.M. dos Santos et al., Metal cations intercalated titanate nanotubes as catalysts for α,β unsaturated esters production. Appl. Catal. A Gen. 454, 74–80 (2013)

    Article  CAS  Google Scholar 

  50. A.R. Adini, M. Redlich, R. Tenne, Medical applications of inorganic fullerene-like nanoparticles. J. Mater. Chem. 21, 15121–15131 (2011)

    Article  CAS  Google Scholar 

  51. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807–2824 (2006)

    Article  CAS  Google Scholar 

  52. R. Tenne, Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1, 103–111 (2006)

    Article  CAS  Google Scholar 

  53. P. Nguyen, H.T. Ng, M. Meyyappan, Catalyst metal selection for synthesis of inorganic nanowires. Adv. Mater. 17, 1773–1777 (2005)

    Article  CAS  Google Scholar 

  54. I. Kiricsi et al., Synthesis, characterization and catalytic application of inorganic nanotubes. Stud. Surf. Sci. Catal. 130, 1115–1120 (2000)

    Article  Google Scholar 

  55. H. Nefzi, F. Sediri, Vanadium oxide nanotubes VOx-NTs: hydrothermal synthesis, characterization, electrical study and dielectric properties. J. Solid State Chem. 201, 237–243 (2013)

    Article  CAS  Google Scholar 

  56. S. Kim, M. Kim, S.-H. Hwang, S.K. Lim, Enhancement of photocatalytic activity of titania–titanate nanotubes by surface modification. Appl. Catal. B Environ. 123, 391–397 (2012)

    Article  CAS  Google Scholar 

  57. H. Chu, L. Wei, R. Cui, J. Wang, Y. Li, Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 1117–1134 (2010)

    Article  CAS  Google Scholar 

  58. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, M. Nath, Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl. Phys. Lett. 78, 1853 (2001)

    Article  CAS  Google Scholar 

  59. G. Tourillon, L. Pontonnier, J.P. Levy, V.L. Electrochemically, Synthesized Co and Fe nanowires and nanotubes. Electrochem. Solid-State Lett. 3, 20 (1999)

    Article  Google Scholar 

  60. M. Yada, M. Mihara, S. Mouri, M. Kuroki, T. Kijima, Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater. 14, 309–313 (2002)

    Article  CAS  Google Scholar 

  61. B.A. Hernandez, K.-S. Chang, E.R. Fisher, P.K. Dorhout, Sol−gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater. 14, 480–482 (2002)

    Article  CAS  Google Scholar 

  62. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 76, 4737–4740 (1996)

    Article  CAS  Google Scholar 

  63. A. Stojanovic, S. Olveira, M. Fischer, S. Seeger, Polysiloxane nanotubes. Chem. Mater. 25, 2787–2792 (2013)

    Article  CAS  Google Scholar 

  64. Y. Wang, A. Santos, A. Evdokiou, D. Losic, Rational design of ultra-short anodic alumina nanotubes by short-time pulse anodization. Electrochim. Acta 154, 379–386 (2015)

    Article  CAS  Google Scholar 

  65. J. Wu et al., Chemically controlled growth of porous CeO2 nanotubes for Cr(VI) photoreduction. Appl. Catal. B Environ. 174, 435–444 (2015)

    Article  CAS  Google Scholar 

  66. H. Hu, Z. Jiao, J. Ye, G. Lu, Y. Bi, Highly efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes. Nano Energy 8, 103–109 (2014)

    Article  CAS  Google Scholar 

  67. Y.-H. Seo, S.-C. Han, S.-E. Park, Amino functionalized silica nanotube for base catalyzed reaction. Stud. Surf. Sci. Catal. 174, 1081–1086 (2008)

    Article  Google Scholar 

  68. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307–1311 (1999)

    Article  CAS  Google Scholar 

  69. Y.-H. Lee et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  CAS  Google Scholar 

  70. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube. Langmuir 14(123), 160–3163 (1998). https://doi.org/10.1021/LA9713816

    Article  CAS  Google Scholar 

  71. D.V. Bavykin, F.C. Walsh, P. O’Brien, H. Craighead, H. Kroto, Titanate and Titania Nanotubes (The Royal Society of Chemistry, London, 2009). https://doi.org/10.1039/9781849730778

    Book  Google Scholar 

  72. A. Nakahira, T. Kubo, C. Numako, TiO2-derived titanate nanotubes by hydrothermal process with acid treatments and their microstructural evaluation. ACS Appl. Mater. Interfaces 2, 2611–2616 (2010)

    Article  CAS  Google Scholar 

  73. P. Akhter, M. Hussain, G. Saracco, N. Russo, Novel nanostructured-TiO2 materials for the photocatalytic reduction of CO2 greenhouse gas to hydrocarbons and syngas. Fuel 149, 55–65 (2015)

    Article  CAS  Google Scholar 

  74. M. Myahkostupov, M. Zamkov, F.N. Castellano, Dye-sensitized photovoltaic properties of hydrothermally prepared TiO2 nanotubes. Energy Environ. Sci. 4, 998–1010 (2011)

    Article  CAS  Google Scholar 

  75. H. Wang, S. Cao, C. Cen, X. Chen, Z. Wu, Structure–activity relationship of titanate nanotube-confined ceria catalysts in selective catalytic reduction of NO with ammonia. Catal. Lett. 143, 1312–1318 (2013)

    Article  CAS  Google Scholar 

  76. A. Elsanousi et al., Hydrothermal treatment duration effect on the transformation of titanate nanotubes into nanoribbons. J. Phys. Chem. C 111, 14353–14357 (2007)

    Article  CAS  Google Scholar 

  77. J. Edisson Morgado et al., Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chem. Mater. 194, 665–676 (2007). https://doi.org/10.1021/CM061294B

    Article  Google Scholar 

  78. Y. Lan et al., Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 15, 1310–1318 (2005)

    Article  CAS  Google Scholar 

  79. B.C. Viana et al., Alkali metal intercalated titanate nanotubes: a vibrational spectroscopy study. Vib. Spectrosc. 55, 183–187 (2011)

    Article  CAS  Google Scholar 

  80. H. Li et al., Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Res. 8, 900–906 (2015)

    Article  CAS  Google Scholar 

  81. M. Kitano, K. Nakajima, J.N. Kondo, S. Hayashi, M. Hara, Protonated titanate nanotubes as solid acid catalyst. J. Am. Chem. Soc. 132, 6622–6623 (2010)

    Article  CAS  Google Scholar 

  82. A. Kleinhammes et al., Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls. Chem. Phys. Lett. 411, 81–85 (2005)

    Article  CAS  Google Scholar 

  83. S. Li et al., Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. Appl. Catal. B Environ. 170, 124–134 (2015)

    Article  CAS  Google Scholar 

  84. K. Zhu, H. Gao, G. Hu, Z. Shi, A rapid transformation of titanate nanotubes into single-crystalline anatase TiO2 nanocrystals in supercritical water. J. Supercrit. Fluids 83, 28–34 (2013)

    Article  CAS  Google Scholar 

  85. Y. Shi et al., Synthesis and characterization of TiO2 nanotube supported Rh-nanoparticle catalysts for regioselective hydroformylation of vinyl acetate. RSC Adv. 4, 62215–62222 (2014)

    Article  CAS  Google Scholar 

  86. D.J.M. de Vlieger, L. Lefferts, K. Seshan, Ru decorated carbon nanotubes - a promising catalyst for reforming bio-based acetic acid in the aqueous phase. Green Chem. 16, 864–874 (2014)

    Article  CAS  Google Scholar 

  87. S.Y. Lee et al., Kinetics of styrene polymerization to syndiotactic polystyrene over metallocene catalyst on flat surface, silica nanotube reactors and porous silica particles. Macromolecules 44, 1385–1392 (2011)

    Article  CAS  Google Scholar 

  88. B. Zhu et al., Synthesis of metal-doped TIO2 nanotubes and their catalytic performance for low-temperature co oxidation. React. Kinet. Catal. Lett. 88, 301–308 (2006)

    Article  CAS  Google Scholar 

  89. S.K. Parayil et al., Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes. Appl. Catal. A Gen. 498, 205–213 (2015)

    Article  CAS  Google Scholar 

  90. P. Hernández-Hipólito et al., Novel heterogeneous basic catalysts for biodiesel production: sodium titanate nanotubes doped with potassium. Catal. Today 250, 187–196 (2015)

    Article  CAS  Google Scholar 

  91. D. Nepak, S. Darbha, Selective aerobic oxidation of alcohols over Au–Pd/sodium titanate nanotubes. Cat. Com. 58, 149–153 (2015)

    Article  CAS  Google Scholar 

  92. C.H. Campos et al., Immobilised chiral inducer on Pt-based mesoporous titanate nanotubes as heterogeneous catalysts for enantioselective hydrogenation. J. Mol. Catal. A Chem. 398, 190–202 (2015)

    Article  CAS  Google Scholar 

  93. Y. Wang, W. Liu, T. Wang, J. Ni, Arsenate adsorption onto Fe-TNTs prepared by a novel water–ethanol hydrothermal method: Mechanism and synergistic effect. J. Colloid Interface Sci. 440, 253–262 (2015)

    Article  CAS  Google Scholar 

  94. X. Sun, J. Zhang, G. Zhang, X. Pan, T. Huang, Preparation and characteristics of TiO2 nanotube catalysts used in hybrid photocatalysis/membrane process. Cat. Com. 18, 76–80 (2012)

    Article  CAS  Google Scholar 

  95. F.-X. Xiao, Construction of highly ordered ZnO–TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl. Mater. Interfaces 4, 7055–7063 (2012)

    Article  CAS  Google Scholar 

  96. G. Hägg, Gezetsmassigkeiten im Kristallbau bei Hydriden, Boriden, Karbiden und Nitriden der Ubergangselemente. Z. Phys. Chem. 12, 33–56 (1931)

    Google Scholar 

  97. L. Brewer, A most striking confirmation of the Engel metallic correlation. Acta Metall. 15, 553–556 (1967)

    Article  CAS  Google Scholar 

  98. N. Engel, Copper, copper alloys and the electron concentration concept. Acta Metall. 15, 557–563 (1967)

    Article  CAS  Google Scholar 

  99. C.C. Yu, S. Ramanathan, F. Sherif, S.T. Oyama, Structural, surface, and catalytic properties of a new bimetallic V-Mo oxynitride catalyst for hydrodenitrogenation. J. Phys. Chem. 98, 13038–13041 (1994)

    Article  CAS  Google Scholar 

  100. Y. Zhong et al., Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3, 1500286 (2016)

    Article  CAS  Google Scholar 

  101. Y. Liu, T.G. Kelly, J.G. Chen, W.E. Mustain, Metal carbides as alternative electrocatalyst supports. ACS Catal. 3, 1184–1194 (2013)

    Article  CAS  Google Scholar 

  102. D.J. Ham, J.S. Lee, Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2, 873–899 (2009)

    Article  CAS  Google Scholar 

  103. J.S. Lee, S.T. Oyama, M. Boudart, Molybdenum carbide catalysts: I. Synthesis of unsupported powders. J. Catal. 106, 125–133 (1987)

    Article  CAS  Google Scholar 

  104. L. Volpe, M. Boudart, Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides. J. Solid State Chem. 59, 332–347 (1985)

    Article  CAS  Google Scholar 

  105. L. Volpe, M. Boudart, Compounds of molybdenum and tungsten with high specific surface area: II. Carbides. J. Solid State Chem. 59, 348–356 (1985)

    Article  CAS  Google Scholar 

  106. J.S. Lee, L. Volpe, F.H. Ribeiro, M. Boudart, Molybdenum carbide catalysts: II. Topotactic synthesis of unsupported powders. J. Catal. 112, 44–53 (1988)

    Article  CAS  Google Scholar 

  107. Y. Villasana et al., Maya crude oil hydrotreating reaction in a batch reactor using alumina-supported NiMo carbide and nitride as catalysts. Catal. Today 220, 318–326 (2014)

    Article  CAS  Google Scholar 

  108. S.T. Oyama, Introduction to the chemistry of transition metal carbides and nitrides, in The Chemistry of Transition Metal Carbides and Nitrides, ed. by S. T. Oyama, (Springer, Netherlands, 1996), pp. 1–27. https://doi.org/10.1007/978-94-009-1565-7_1

    Chapter  Google Scholar 

  109. S. Ramanathan, S.T. Oyama, New catalysts for hydroprocessing: transition metal carbides and nitrides. J. Phys. Chem. 99, 16365–16372 (1995)

    Article  CAS  Google Scholar 

  110. M. Nagai, Transition-metal nitrides for hydrotreating catalyst—synthesis, surface properties, and reactivities. Appl. Catal. A Gen. 322, 178–190 (2007)

    Article  CAS  Google Scholar 

  111. H. Tominaga, M. Nagai, Mechanism of thiophene hydrodesulfurization on clean/sulfided β-Mo2C(0 0 1) based on density functional theory—cis- and trans-2-Butene formation at the initial stage. Appl. Catal. A Gen. 343, 95–103 (2008)

    Article  CAS  Google Scholar 

  112. M. Nagai, Y. Goto, O. Uchino, S. Omi, TPD study and carbazole hydrodenitrogenation activity of nitrided molybdena–alumina. Catal. Today 45, 335–340 (1998)

    Article  CAS  Google Scholar 

  113. M. Nagai, Y. Goto, O. Uchino, S. Omi, TPD and XRD studies of molybdenum nitride and its activity for hydrodenitrogenation of carbazole. Catal. Today 43, 249–259 (1998)

    Article  CAS  Google Scholar 

  114. M. Nagai et al., Temperature-programmed reduction and XRD studies of ammonia-treated molybdenum oxide and its activity for carbazole hydrodenitrogenation. J. Catal. 182, 292–301 (1999)

    Article  CAS  Google Scholar 

  115. Y.-J. Zhang, Q. Xin, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene over dimolybdenum nitride catalysts. Appl. Catal. A Gen. 180, 237–245 (1999)

    Article  CAS  Google Scholar 

  116. E. Furimsky, Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl. Catal. A Gen. 240, 1–28 (2003)

    Article  CAS  Google Scholar 

  117. M. Erola, J. Keinonen, A. Anttila, J. Koskinen, TiN films prepared by nitrogen implantation on Ti-coated fused SiO2. Sol. Energy Mater. 12, 353–359 (1985)

    Article  CAS  Google Scholar 

  118. C. Ernsberger, J. Nickerson, A. Miller, D. Banks, Contact resistance behavior of titanium nitride. J. Vac. Sci. Technol. A 3, 2303–2307 (1985)

    Article  CAS  Google Scholar 

  119. I. Suni, M. Maenpaa, M.A. Nicolet, M. Luomajarvi, Thermal stability of hafnium and titanium nitride diffusion barriers in multilayer contacts to silicon. J. Electrochem. Soc. 130, 1215–1218 (1983)

    Article  CAS  Google Scholar 

  120. M. Wittmer, Properties and microelectronic applications of thin films of refractory metal nitrides. J. Vac. Sci. Technol. A 3, 1797–1803 (1985)

    Article  CAS  Google Scholar 

  121. C.W. Colling, J.-G. Choi, L.T. Thompson, Molybdenum nitride catalysts: II. H2 temperature programmed reduction and NH3 temperature programmed desorption. J. Catal. 160, 35–42 (1996)

    Article  CAS  Google Scholar 

  122. J.-S. Choi, G. Bugli, G. Djéga-Mariadassou, Influence of the degree of carburization on the density of sites and hydrogenating activity of molybdenum carbides. J. Catal. 193, 238–247 (2000)

    Article  CAS  Google Scholar 

  123. J.-G. Choi, H.J. Lee, L.T. Thompson, Temperature-programmed desorption of H2 from molybdenum nitride thin films. Appl. Surf. Sci. 78, 299–307 (1994)

    Article  CAS  Google Scholar 

  124. J.-G. Choi et al., Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts. Catal. Today 15, 201–222 (1992)

    Article  CAS  Google Scholar 

  125. J. Ancheyta, Properties of catalysts for heavy oil hydroprocessing, in Deactivation of heavy oil hydroprocessing catalysts, (John Wiley & Sons, Inc., New Jersey, 2016), pp. 31–87. https://doi.org/10.1002/9781118769638.ch2

    Chapter  Google Scholar 

  126. S.M. Hunter, Molybdenum Nitrides: Structural and Reactivity Studies. Ph.D. thesis (College of Science and Engineering, School of Chemistry, 2012)

    Google Scholar 

  127. K. Miga, K. Stanczyk, C. Sayag, D. Brodzki, G. Djéga-Mariadassou, Bifunctional behavior of bulk mooxny and nitrided supported nimo catalyst in hydrodenitrogenation of indole. J. Catal. 183, 63–68 (1999)

    Article  CAS  Google Scholar 

  128. S.T. Oyama, G.L. Haller, Catalysis, Specialist Periodical Review, vol 5 (Royal Society of Chemistry, London, 1982), p. 333

    Google Scholar 

  129. X. Li, Y. Chen, Y. Zhang, C. Ji, Q. Xin, Temperature-programmed desorption and adsorption of hydrogen on Mo2N. React. Kinet. Catal. Lett. 58, 391–396 (1996)

    Article  CAS  Google Scholar 

  130. X.S. Li et al., Irreversible hydrogen uptake on Mo2N catalyst. React. Kinet. Catal. Lett. 57, 177–182 (1996)

    Article  CAS  Google Scholar 

  131. A. Guerrero-Ruiz, Q. Xin, Y.J. Zhang, A. Maroto-Valiente, I. Rodriguez-Ramos, Microcalorimetric study of H2 adsorption on molybdenum nitride catalysts. Langmuir 15, 4927–4929 (1999)

    Article  CAS  Google Scholar 

  132. Z. Wei, Q. Xin, P. Grange, B. Delmon, TPD and TPR studies of molybdenum nitride. J. Catal. 168, 176–182 (1997)

    Article  CAS  Google Scholar 

  133. J.C. Schlatter, S.T. Oyama, J.E. Metcalfe, J.M. Lambert, Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline. Ind. Eng. Chem. Res. 27, 1648–1653 (1988)

    Article  CAS  Google Scholar 

  134. E. Puello-Polo, J.L. Brito, Effect of the activation process on thiophene hydrodesulfurization activity of activated carbon-supported bimetallic carbides. Catal. Today 149, 316–320 (2010)

    Article  CAS  Google Scholar 

  135. E. Puello-Polo, J.L. Brito, Effect of the type of precursor and the synthesis method on thiophene hydrodesulfurization activity of activated carbon supported Fe-Mo, Co-Mo and Ni-Mo carbides. J. Mol. Catal. A Chem. 281, 85–92 (2008)

    Article  CAS  Google Scholar 

  136. Y. Li et al., The modification of molybdenum nitrides: the effect of the second metal component. Catal. Lett. 48, 239–245 (1997)

    Article  CAS  Google Scholar 

  137. E.J. Markel, J.W. Van Zee, Catalytic hydrodesulfurization by molybdenum nitride. J. Catal. 126, 643–657 (1990)

    Article  CAS  Google Scholar 

  138. J. Trawczyński, Comparison of HDS of dibenzothiophene and HDN of quinoline over supported Mo and CoMo nitrided and sulfided catalysts. React. Kinet. Catal. Lett. 69, 293–298 (2000)

    Article  Google Scholar 

  139. W. Yuhong, L. Wei, Z. Minghui, G. Naijia, T. Keyi, Characterization and catalytic properties of supported nickel molybdenum nitrides for hydrodenitrogenation. Appl. Catal. A Gen. 215, 39–45 (2001)

    Article  Google Scholar 

  140. M. Breysse, P. Afanasiev, C. Geantet, M. Vrinat, Overview of support effects in hydrotreating catalysts. Appl. Catal. 86, 5–16 (2003)

    CAS  Google Scholar 

  141. M. Breysse, E. Furimsky, S. Kasztelan, M. Lacroix, G. Perot, Hydrogen activation by transition metal sulfides. Catal. Rev. Eng. 44, 651–735 (2002)

    Article  CAS  Google Scholar 

  142. Y. Villasana, Carburos, Nitruros Y Sulfuros De Mo Y W Promovidos Con Fe, Co Y Ni, Y Su Aplicación Como Catalizadores En Hidrotratamiento De Crudos Pesados (Venezuelan Institute for Scientific Research, Mérida and Zulia, 2014)

    Google Scholar 

  143. Y. Villasana et al., Nanometric CoMo carbide and nitride as heavy oil hydroprocessing catalysts: application to an Orinoco Oil Belt crude (NANOSUR, Miami, 2014)

    Google Scholar 

  144. Y. Villasana et al., Quality improvement of Carabobo heavy crude oil with Al2O3-supported CoW carbide and nitride nanoparticles, in International Material Research Congress (2016)

    Google Scholar 

  145. R.R. Oliveira Jr., A.S. Rocha, V. Teixeira da Silva, A.B. Rocha, Investigation of hydrogen occlusion by molybdenum carbide. Appl. Catal. A Gen. 469, 139–145 (2014)

    Article  CAS  Google Scholar 

  146. P. Da Costa, C. Potvin, J.-M. Manoli, B. Genin, G. Djéga-Mariadassou, Deep hydrodesulphurization and hydrogenation of diesel fuels on alumina-supported and bulk molybdenum carbide catalysts. Fuel 83, 1717–1726 (2004)

    Article  CAS  Google Scholar 

  147. V. Sundaramurthy, A.K. Dalai, J. Adjaye, Comparison of P-containing γ-Al2O3 supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen. Appl. Catal. A Gen. 311, 155–163 (2006)

    Article  CAS  Google Scholar 

  148. Y. Villasana, S. Ramírez, J. Ancheyta, J.L. Brito, Effect of hydrotreating reaction conditions on viscosity, API gravity and specific gravity of Maya Crude Oil, in Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment, ed. by L. D. G. Sigalotti, J. Klapp, E. Sira, (Springer International, New York, 2014), pp. 423–430. https://doi.org/10.1007/978-3-319-00191-3_28

    Chapter  Google Scholar 

Download references

Acknowledgements

The support by CNPq (473568/2012-8, 470793/2013-9) and CAPES/Funcap (23038.008860/2013-92) is greatly acknowledged. Also, Villasana wants to thank the technical support offered by Joaquín L. Brito, Franklin J. Méndez, and Yelisbeth Escalante from the Venezuelan Institute for Scientific Research and Edgar Cañizalez from PDVSA Intevep.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Carvalho, D.C., Filho, J.M., Ferreira, O.P., Oliveira, A.C., Assaf, E.M., Villasana, Y. (2019). Synthesis of Novel Catalytic Materials: Titania Nanotubes and Transition Metal Carbides, Nitrides, and Sulfides. In: Domínguez-Esquivel, J., Ramos, M. (eds) Advanced Catalytic Materials: Current Status and Future Progress. Springer, Cham. https://doi.org/10.1007/978-3-030-25993-8_2

Download citation

Publish with us

Policies and ethics