Skip to main content

Vaccines

  • Chapter
  • First Online:
Immunoepidemiology
  • 866 Accesses

Abstract

Vaccination is an important and well-documented successful approach for disease prevention and public health intervention. The CDC estimates that for children in the USA who were born between 1994 and 2016, vaccination will prevent an estimated 381 million illnesses, 24.5 million hospitalizations, and 855,000 deaths in their lifetimes (https://www.cdc.gov/vaccines/partners/childhood/multimedia/animatedgraphic.html). Although vaccine-based therapies are also employed for the treatment of cancer and allergies and are being developed for the treatment of drug addiction, vaccination has been primarily used for the prevention of infectious diseases; these will be the focus of this chapter. We will examine current vaccines, adjuvants, and delivery systems and what is known about the mechanisms of action. We will also explore the challenges involved in vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thucydides (translation Thomas Hobbs). History of the Peloponnesian war. Chicago: University of Chicago Press; 1989. p. 608.

    Google Scholar 

  2. Plotkin SA, editor. History of vaccine development. New York: Springer; 2011. p. 338.∗∗∗

    Google Scholar 

  3. Zinkernagel RM. What if protective immunity is antigen-driven and not due to so-called “memory” B and T cells? Immunol Rev. 2018;283:238–46.

    Article  CAS  PubMed  Google Scholar 

  4. Plotkin S, Orenstein W, Offit P, Edward KM, editors. Plotkin’s vaccines. 7th ed. Philadelphia: Elsevier; 2018. p. 1720. https://doi.org/10.1016/C2013-0-18914-3.∗∗∗∗∗

    Book  Google Scholar 

  5. Bonam SR, Partidos CD, Halmuthur SKM, Muller S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci. 2017;38:771–93.

    Article  CAS  PubMed  Google Scholar 

  6. van Aalst SI, Ludwig S, van Kooten PJS, van der Zee R, van Eden W, Broere F. Dynamics of APC recruitment at the site of injection following injection of vaccine adjuvants. Vaccine. 2017;35:1622–9.∗∗∗∗

    Article  PubMed  CAS  Google Scholar 

  7. Cain DW, Sanders SE, Cunningham MM, Kelsoe G. Disparate adjuvant properties among three formulations of “alum”. Vaccine. 2013;31:653–60.

    Article  CAS  PubMed  Google Scholar 

  8. Sun B, Ji Z, Liao YP, Wang M, Wang X, Dong J, et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano. 2013;7:10834–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghimire TR. The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. Springerplus. 2015;4:181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wen Y, Shi Y. Alum: an old dog with new tricks. Emerg Microbes Infect. 2016;5:e25.∗∗

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noges LE, White J, Cambier JC, Kappler JW, Marrack P. Contamination of DNase preparations confounds analysis of the role of DNA in alum-adjuvanted vaccines. J Immunol. 2016;197:1221–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khameneh HJ, Ho AW, Spreafico R, Derks H, Quek HQ, Mortellaro A. The Syk-NFAT-IL-2 pathway in dendritic cells is required for optimal sterile immunity elicited by alum adjuvants. J Immunol. 2017;198:196–204.

    Article  CAS  PubMed  Google Scholar 

  13. O’Hagan DT, Friedland LR, Hanon E, Didierlaurent AM. Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol. 2017;47:93–102.

    Article  PubMed  CAS  Google Scholar 

  14. Carter D, Fox CB, Day TA, Guderian JA, Liang H, Rolf T, et al. A structure-function approach to optimizing TLR4 ligands for human vaccines. Clin Transl Immunol. 2016;5:e108.

    Article  CAS  Google Scholar 

  15. Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M. Toll-like receptor agonist conjugation: a chemical perspective. Bioconjug Chem. 2018;29:587–603.

    Article  CAS  PubMed  Google Scholar 

  16. Campbell JD. Development of the CpG adjuvant 1018: a case study. Methods Mol Biol. 2017;1494:15–27.

    Article  CAS  PubMed  Google Scholar 

  17. O’Hagan DT, Ott GS, De Gregorio E, Seubert A. The mechanism of action of MF59 – an innately attractive adjuvant formulation. Vaccine. 2012;30:4341–8.∗∗

    Article  PubMed  CAS  Google Scholar 

  18. Marciani DJ. Elucidating the mechanisms of action of saponin-derived adjuvants. Trends Pharmacol Sci. 2018;39:573–85.∗∗

    Article  CAS  PubMed  Google Scholar 

  19. Fernandez-Tejada A, Tan DS, Gin DY. Development of improved vaccine adjuvants based on the saponin natural product QS-21 through chemical synthesis. Acc Chem Res. 2016;49:1741–56.∗∗

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, et al. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol. 2017;34:3–24.∗∗

    Article  CAS  PubMed  Google Scholar 

  21. Mohsen MO, Gomes AC, Vogel M, Bachmann MF. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccine. 2018;6:37–50.∗∗∗∗

    Article  CAS  Google Scholar 

  22. Fuenmayor J, Godia F, Cervera L. Production of virus-like particles for vaccines. New Biotechnol. 2017;39:174–80.

    Article  CAS  Google Scholar 

  23. Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines. 2014;2:159–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Serrano LO, Burkhart DJ. Liposomal vaccine formulations as prophylactic agents: design considerations for modern vaccines. J Nanobiotechnol. 2017;15:83.∗∗∗∗

    Article  CAS  Google Scholar 

  25. Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine. 2009;27:4388–401.∗∗

    Article  CAS  PubMed  Google Scholar 

  26. Moser C, Amacker M, Kammer AR, Rasi S, Westerfeld N, Zurbriggen R. Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev Vaccines. 2007;6:711–21.

    Article  CAS  PubMed  Google Scholar 

  27. Silva AL, Soema PC, Slutter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother. 2016;12:1056–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tzeng SY, McHugh KJ, Behrens AM, Rose S, Sugarman JL, Ferber S, et al. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proc Natl Acad Sci U S A. 2018;115:E5269–78.∗∗

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leone M, Monkare J, Bouwstra JA, Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm Res. 2017;34:2223–40.∗∗

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Draper S, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, et al. Malaria vaccines: recent advances and new horizons. Cell Host Microbe. 2018;24:43–56.∗∗∗∗

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ouattara A, Barry AE, Dutta S, Remarque EJ, Beeson JG, Plowe CV. Designing malaria vaccines to circumvent antigen variability. Vaccine. 2015;33:7506–12.∗∗∗∗

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rios A. Fundamental challenges to the development of a preventive HIV vaccine. Curr Opin Virol. 2018;29:26–32.∗∗

    Article  PubMed  Google Scholar 

  33. Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med. 2015;66:423–37.

    Article  CAS  PubMed  Google Scholar 

  34. Guo X, Zhong JY, Li JW. Hepatitis C virus infection and vaccine development. J Clin Exp Hepatol. 2018;8:195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Soema PC, Kompier R, Amorij JP, Kersten GF. Current and next generation influenza vaccines: formulation and production strategies. Eur J Pharm Biopharm. 2015;94:251–63.∗∗∗∗

    Article  CAS  PubMed  Google Scholar 

  36. Zhou F, Trieu MC, Davies R, Cox RJ. Improving influenza vaccines: challenges to effective implementation. Curr Opin Immunol. 2018;53:88–95.∗∗∗∗

    Article  CAS  PubMed  Google Scholar 

  37. Atsmon J, Caraco Y, Ziv-Sefer S, Shaikevich D, Abramov E, Volokhov I, et al. Priming by a novel universal influenza vaccine (Multimeric-001)-a gateway for improving immune response in the elderly population. Vaccine. 2014;32:5816–23.

    Article  CAS  PubMed  Google Scholar 

  38. Voss G, Casimiro D, Neyrolles O, Williams A, Kaufmann SHE, McShane H, et al. Progress and challenges in TB vaccine development. F1000Res. 2018;7:199.∗∗∗∗

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Moliva JI, Turner J, Torrelles JB. Immune responses to bacillus Calmette-Guerin vaccination: why do they fail to protect against Mycobacterium tuberculosis? Front Immunol. 2017;8:407.∗∗∗∗

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang C, Liu Y, Cavanagh MM, Le Saux S, Qi Q, Roskin KM, et al. B-cell repertoire responses to varicella-zoster vaccination in human identical twins. Proc Natl Acad Sci U S A. 2015;112:500–5.

    Article  CAS  PubMed  Google Scholar 

  41. Pellegrino P, Falvella FS, Cheli S, Perrotta C, Clementi E, Radice S. The role of Toll-like receptor 4 polymorphisms in vaccine immune response. Pharmacogenomics J. 2016;16:96–101.

    Article  CAS  PubMed  Google Scholar 

  42. Poland GA, Ovsyannikova IG, Jacobson RM, Smith DI. Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clin Pharmacol Ther. 2007;82:653–64.∗∗∗∗

    Article  CAS  PubMed  Google Scholar 

  43. Posteraro B, Pastorino R, Di Giannantonio P, Ianuale C, Amore R, Ricciardi W, Boccia S. The link between genetic variation and variability in vaccine responses: systematic review and meta-analyses. Vaccine. 2014;32:1661–9.∗∗∗∗

    Article  CAS  PubMed  Google Scholar 

  44. Haralambieva IH, Ovsyannikova IG, Kennedy RB, Larrabee BR, Zimmermann MT, Grill DE, et al. Genome-wide associations of CD46 and IFI44L genetic variants with neutralizing antibody response to measles vaccine. Hum Genet. 2017;136:421–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsang JS. Utilizing population variation, vaccination, and systems biology to study human immunology. Trends Immunol. 2015;36:479–93.∗∗∗∗

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hagan T, Pulendran B. Will systems biology deliver it’s promise and contribute to the development of new or improved vaccines? From data to understanding through systems biology. Cold Spring Harbor perspectives in biology. Cold Spring Harb Perspect Biol. 2017. https://doi.org/10.1101/cshperspect.a028894.

    Article  CAS  Google Scholar 

  47. Bragazzi NL, Gianfredi V, Villarini M, Rosselli R, Nasr A, Hussein A, et al. Vaccines meet big data: state-of-the-art and future prospects. From the classical 3Is (“isolate-inactivate-inject”) Vaccinology 1.0 to Vaccinology 3.0, vaccinomics, and beyond: a historical overview. Front Public Health. 2018;6:62.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Whitaker JA, Ovsyannikova IG, Poland PA. Adversomics: a new paradigm for vaccine safety and design. Expert Rev Vaccines. 2015;14:935–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gounder AP, Boon ACN. Influenza pathogenesis: the effect of host factors on severity of disease. J Immunol. 2019;202:341–50.∗∗

    Article  CAS  PubMed  Google Scholar 

  50. Tsang JS, Schwartzberg PL, Kotliarov Y, Biancotto A, Xie Z, Germain RN, et al. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell. 2014;157:499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andres-Terre M, McGuire H, Pouliot Y, Bongen E, Sweeney TE, Tato CM, et al. Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity. 2015;43:1199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhattacharjee A, Hand TW. Role of nutrition, infection, and the microbiota in the efficacy of oral vaccines. Clin Sci. 2018;132:1169–77.

    Article  CAS  Google Scholar 

  53. Li XX, Zhou XN. Co-infection of tuberculosis and parasitic diseases in humans: a systematic review. Parasit Vectors. 2013;6:79.∗∗∗∗

    Article  PubMed  PubMed Central  Google Scholar 

  54. Smith AD, Panickar KS, Urban JF Jr, Dawson HD. Impact of micronutrients on the immune response of animals. Annu Rev Anim Biosci. 2018;6:227–54.

    Article  CAS  PubMed  Google Scholar 

  55. DiNardo AR, Nishiguchi T, Mace EM, Rajapakshe K, Mtetwa G, Kay A, et al. Schistosomiasis induces persistent DNA methylation and tuberculosis-specific immune changes. J Immunol. 2018;201:124–33.

    Article  CAS  PubMed  Google Scholar 

  56. Malhotra I, Mungai P, Wamachi A, Kioko J, Ouma JH, Kazura JW, King CL. Helminth- and Bacillus Calmette-Guerin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J Immunol. 1999;162:6843–8.

    CAS  PubMed  Google Scholar 

  57. Benn CS, Netea MG, Selin LK, Aaby P. A small jab – a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 2013;34:431–9.∗∗∗∗

    Article  CAS  PubMed  Google Scholar 

  58. Jensen KJ, Benn CS, van Crevel R. Unravelling the nature of non-specific effects of vaccines-A challenge for innate immunologists. Semin Immunol. 2016;28:377–83.

    Article  CAS  PubMed  Google Scholar 

  59. Mina MJ, Metcalf CJ, de Swart RL, Osterhaus AD, Grenfell BT. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science. 2015;348:694–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nankabirwa V, Tumwine JK, Mugaba PM, Tylleskar T, Sommerfelt H, PROMISE- EBF Study Group. Child survival and BCG vaccination: a community based prospective cohort study in Uganda. BMC Public Health. 2015;15:175.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23:89–100.

    Article  CAS  PubMed  Google Scholar 

  62. Mina MJ. Generalized herd effects and vaccine evaluation: impact of live influenza vaccine on off-target bacterial colonisation. J Infect. 2017;74(Suppl 1):S101–7.

    Article  PubMed  Google Scholar 

  63. Good-Jacobson K. Strength in diversity: phenotypic, functional, and molecular heterogeneity within the memory B cell repertoire. Immunol Rev. 2018;284:67–78.

    Article  CAS  PubMed  Google Scholar 

  64. Takamura S. Niches for the long-term maintenance of tissue-resident memory T cells. Front Immunol. 2018;9:1214.∗∗∗∗

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hickler B, Guirguis S, Obregon R. Special issue on vaccine hesitancy. Vaccine. 2015;33:4155–217.

    Article  PubMed  Google Scholar 

Readings Key

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane McMahon-Pratt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McMahon-Pratt, D. (2019). Vaccines. In: Krause, P., Kavathas, P., Ruddle, N. (eds) Immunoepidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-25553-4_15

Download citation

Publish with us

Policies and ethics