Skip to main content

Cell Wall Biosynthesis and Latency During Tuberculosis Infections

  • Chapter
  • First Online:
Tuberculosis Host-Pathogen Interactions

Abstract

Mycobacterium tuberculosis (Mtb) uses a wide range of mechanisms to survive the host immune system. Mtb can persist in host tissues for months to decades without replicating, however, non-replicating (or dormant) Mtb has the ability to resume growth at any time. Persons with latent TB infection do not have typical TB symptoms, and dormant forms of Mtb are not considered transmissible. Several factors (e.g. HIV infection, cancers, and immunosuppressive drug therapy) alter the course of latent TB and are thought to have the potential to cause reactivation, leading to active TB. Treatment regimens for latent TB infection require long durations in order to prevent relapse. It is difficult to eradicate latent forms of the relatively drug resistant Mtb in short periods of time with the currently available TB therapies. Thus, it is very important to develop new drugs for the treatment of latent or persistent forms of Mtb that reduce treatment time required for TB patients. Mycobacterial cell walls consist of complex mixtures of polysaccharides and mycolic acids, and they play an important role in escaping from the host immune systems and in surviving within granulomas that form in response to the bacteria. This chapter reviews the potential drug targets that exist in cell wall biosynthesis for non-replicating (or dormant) Mtb based on bioinformatics, genomic and proteomic analyses and in vitro data with replicating and non-replicating bacilli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996;64:2062–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol. 2002;72:621–7.

    CAS  PubMed  Google Scholar 

  3. Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol. 2013;35:563–83. https://doi.org/10.1007/s00281-013-0388-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cooper AM, Flynn JL. The protective immune response to Mycobacterium tuberculosis. Curr Opin Immunol. 1995;7:512–6.

    Article  CAS  Google Scholar 

  5. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12:352–67. https://doi.org/10.1038/nri3211.

    Article  CAS  PubMed  Google Scholar 

  6. Chen K, Kolls JK. T cell-mediated host immune defenses in the lung. Annu Rev Immunol. 2013;31:605–33. https://doi.org/10.1146/annurev-immunol-032712-100019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polena H, Boudou F, Tilleul S, Dubois-Colas N, Lecointe C, Rakotosamimanana N, et al. Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Sci Rep. 2016;6:33162. https://doi.org/10.1038/srep33162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ragno S, Estrada-Garcia I, Butler R, Colston JM. Regulation of macrophage gene expression by Mycobacterium tuberculosis: down-regulation of mitochondrial cytochrome c oxidase. Infect Immun. 1998;66:3952–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ragno S, Romano M, Howell S, Pappin DJ, Jenner PJ, Colston MJ. Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology. 2001;104:99–108.

    Article  CAS  Google Scholar 

  10. Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. PNAS. 2005;102:8327–32. https://doi.org/10.1073/pnas.0503272102.

    Article  CAS  PubMed  Google Scholar 

  11. Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16:463–96. https://doi.org/10.1128/CMR.16.3.463-496.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hampshirea T, Sonejic S, Baconb J, Jamesb BW, Hindsa J, Lainga K, et al. Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model or persistent organisms? Tuberculosis (Edinb). 2004;84:228–38. https://doi.org/10.1016/j.tube.2003.12.010.

    Article  Google Scholar 

  13. Bacon J, Alderwick LJ, Allnutt JA, Gabasova E, Watson R, Hatch KA, et al. Non-replicating Mycobacterium tuberculosis elicits a reduced infectivity profile with corresponding modifications to the cell wall and extracellular matrix. PLoS One. 2014;9:e87329. https://doi.org/10.1371/journal.pone.0087329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abrahams KA, Besra GS. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology. 2018;145:116–33. https://doi.org/10.1017/S0031182016002377.

    Article  PubMed  Google Scholar 

  15. Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36:514–32. https://doi.org/10.1111/j.1574-6976.2012.00331.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alderwick LJ, Harrison J, Lloyd GS, Birch HL. The mycobacterial cell wall-peptidoglycan and arabinogalactan. Cold Spring Harb Perspect Med. 2015;5:a021113. https://doi.org/10.1101/cshperspect.a021113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Heijenoort J. In: Ghuysen JM, Hakenbeck R, editors. Bacterial cell wall in biosynthesis of bacterial peptidoglycan. Amsterdam: Elsevier Science; 1994. p. 39–54. ISBN: 9780080860879.

    Chapter  Google Scholar 

  18. Mahapatra S, Scherman H, Brennan PJ, Crick DC. N-Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J Bacteriol. 2005;187:2341–7. https://doi.org/10.1128/JB.187.7.2341-2347.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raymond JB, Mahapatra S, Crick DC, Pavelka MS Jr. Identification of the namH gene, encoding the hydroxylase responsible for the N-glycosylation of the mycobacterial peptidoglycan. J Biol Chem. 2005;280:326–33. https://doi.org/10.1074/jbc.M411006200.

    Article  CAS  PubMed  Google Scholar 

  20. Jackson M, McNeil MR, Brennan PJ. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol. 2013;8:855–75. https://doi.org/10.2217/fmb.13.52.

    Article  CAS  PubMed  Google Scholar 

  21. Bi Y, Mann E, Whitfield C, Zimmer J. Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature. 2018;553:361–5. https://doi.org/10.1038/nature25190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Angala SK, Pramanik PK, Li K, Crick DC, Liav A, Jozwiak A, Swiezewska E, Jackson M, Chatterjee D. Characterization of a distinct arabinofuranosyltransferase in Mycobacterium smegmatis. J Am Chem Soc. 2007;129:9650–62. https://doi.org/10.1021/ja070330k.

    Article  CAS  PubMed  Google Scholar 

  23. Marrakchi H, Lanéelle M-A, Daffe M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol. 2014;21:67–85. https://doi.org/10.1016/j.chembiol.2013.11.011.

    Article  CAS  PubMed  Google Scholar 

  24. Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of Mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev. 2005;18:81–101. https://doi.org/10.1128/CMR.18.1.81-101.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. North JE, Jackson M, Lee RE. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr Pharm Des. 2014;20:4357–78.

    Article  CAS  Google Scholar 

  26. Cantaloube S, Veyron-Churlet R, Haddache N, Daffé M, Zerbib D. The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes. PLoS One. 2011;6:e29564. https://doi.org/10.1371/journal.pone.0029564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barkan D, Rao V, Sukenick DG, Glickman MS. Redundant function of cmaA2 and mmaA2 in Mycobacterium tuberculosis cis cyclopropanation of oxygenated mycolates. J Bacteriol. 2010;192:3661–8. https://doi.org/10.1128/JB.00312-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaur D, Berg S, Dinadayala P, Gicquel B, Chatterjee D, et al. Biosynthesis of mycobacterial lipoarabinomannan: role of a branching mannosyltransferase. PNAS. 2006;103:13664–9. https://doi.org/10.1073/pnas.0603049103.

    Article  CAS  PubMed  Google Scholar 

  29. Mishra AK, Krumbach K, Rittmann D, Appelmelk B, Pathak V, Pathak AK, et al. Lipoarabinomannan biosynthesis in Corynebacterineae: the interplay of two α(1→2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol Microbiol. 2011;80:1241–59. https://doi.org/10.1111/j.1365-2958.2011.07640.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Orme IM, Basaraba RJ. The formation of the granuloma in tuberculosis infection. Semin Immunol. 2014;16:601–9. https://doi.org/10.1016/j.smim.2014.09.009.

    Article  Google Scholar 

  31. Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol. 2013;3:2–9. https://doi.org/10.3389/fimmu.2012.00411.

    Article  Google Scholar 

  32. Erdemli SB, Gupta R, Bishai WR, Lamichhane G, Amzel ML, Bianchet MA. Targeting the cell wall of Mycobacterium tuberculosis: structure and mechanism of L,D-transpeptidase 2. Structure. 2012;20:2103–15. https://doi.org/10.1016/j.str.2012.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dubnau E, Fontán P, Manganelli P, Soares-Appel S, Smith I. Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun. 2002;70:2787–95. https://doi.org/10.1128/IAI.70.6.2787–2795.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Milstein M, Lecca L, Peloquin C, Mitchison D, Seung K, Pagano M, et al. Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): study protocol for a randomized controlled trial. BMC Infect Dis. 2016;16:453–60. https://doi.org/10.1186/s12879-016-1790-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Starck J, Källenius G, Marklund B-I, Andersson DI, Åkerlund T. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology. 2004;150:3821–9. https://doi.org/10.1099/mic.0.27284-0.

    Article  CAS  PubMed  Google Scholar 

  36. Chen X, Hashizume H, Tomishige T, Nakamura I, Matsuba M, Fujiwara M, et al. Delamanid kills dormant mycobacteria in vitro and in a Guinea pig model of tuberculosis. Antimicrob Agents Chemother. 2017;61:e02402–16. https://doi.org/10.1128/AAC.02402-16.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Manjunatha U, Boshoff HIM, Barry CE III. The mechanism of action of PA-824. Commun Integr Biol. 2009;2:215–8.

    Article  CAS  Google Scholar 

  38. Zhang Y, Wade MY, Scorpio A, Zhang H, Sun Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother. 2003;52:790–5. https://doi.org/10.1093/jac/dkg446.

    Article  CAS  PubMed  Google Scholar 

  39. Sayahi H, Pugliese KM, Zimhony O, Jacobs WR Jr, Shekhtman A, Welch JT. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I. Chem Biodivers. 2012;9:2582–96. https://doi.org/10.1002/cbdv.201200291.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of pyrazinamide action and resistance. Microbiol Spectr. 2013;4:1–12. https://doi.org/10.1128/microbiolspec.MGM2-0023-2013.

    Article  CAS  Google Scholar 

  41. Sacksteder KA, Protopopova M, Barry CE 3rd, Andries K, Nacy CA. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol. 2012;7:823–37. https://doi.org/10.2217/fmb.12.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin Y, Xin Y, Zhang W, Ma Y. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG4947 have WecA function and MSMEG4947 is required for the growth of M. smegmatis. FEMS Microbiol Lett. 2010;310:54–61. https://doi.org/10.1111/j.1574-6968.2010.02045.x.

    Article  CAS  PubMed  Google Scholar 

  43. Mitachi K, Siricilla S, Yang D, Kong Y, Skorupinska-Tudek K, Swiezewska E, et al. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of novel antimycobacterial WecA inhibitors. Anal Biochem. 2016;512:78–90. https://doi.org/10.1016/j.ab.2016.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Siricilla S, Mitachi K, Wan B, Franzblau SG, Kurosu M. Discovery of a capuramycin analog that kills nonreplicating Mycobacterium tuberculosis and its synergistic effects with translocase I inhibitors. J Antibiot. 2015;68:271–8. https://doi.org/10.1038/ja.2014.133.

    Article  CAS  PubMed  Google Scholar 

  45. Kurosu M. Inhibition of N-glycosylation towards novel anti-cancer chemotherapeutics. J Mol Pharm Org Process Res. 2018;6:141–3. https://doi.org/10.4172/2329-9053.1000141.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mitachi K, Aleiwi BA, Schneider CM, Siricilla S, Kurosu M. Stereocontrolled total synthesis of muraymycin D1 having a dual mode of action against Mycobacterium tuberculosis. J Am Chem Soc. 2016;138:12975–80. https://doi.org/10.1021/jacs.6b07395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ishizaki Y, Hayashi C, Inoue K, Igarashi M, Takahashi Y, Pujari V, et al. Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45. J Biol Chem. 2013;288:30309–19. https://doi.org/10.1074/jbc.M113.492173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kolita B, Gogoi D, Dutta PP, Bordoloi M, Bezbaruah RL. Arabinosyl transferase inhibitor design against Mycobacterium tuberculosis using ligand based drug design approach. Bangladesh J Pharmacol. 2014;9:225–9. https://doi.org/10.3329/bjp.v9i2.18270.

    Article  Google Scholar 

  49. Ma Y, Stern RJ, Scherman MS, Vissa VD, Yan W, Jones VC, et al. Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob Agents Chemother. 2001;45:1407–16. https://doi.org/10.1128/AAC.45.5.1407-1416.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Favrot L, Ronning DR. Targeting the mycobacterial envelope for tuberculosis drug development. Expert Rev Anti-Infect Ther. 2012;10:1023–36. https://doi.org/10.1586/eri.12.91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amin AG, Goude R, Shi L, Zhang J, Chatterjee D, Parish T. EmbA is an essential arabinosyltransferase in Mycobacterium tuberculosis. Microbiology. 2008;154:240–8. https://doi.org/10.1099/mic.0.2007/012153-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goude R, Amin AG, Chatterjee D, Parish T. The Arabinosyltransferase EmbC is inhibited by Ethambutol in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2009;53:4138–46.

    Article  CAS  Google Scholar 

  53. Gilleron M, Bala L, Brando T, Vercellone A, Puzo G. Mycobacterium tuberculosis H37Rv parietal and cellular lipoarabinomannans. J Biol Chem. 2000;275:677–84. https://doi.org/10.1074/jbc.275.1.677.

    Article  CAS  PubMed  Google Scholar 

  54. Kolly GS, Mukherjee R, Kilacsková E, Abriata LA, Raccaud M, Blaško J, et al. GtrA protein Rv3789 is required for arabinosylation of arabinogalactan in Mycobacterium tuberculosis. J Bacteriol. 2015;197:3686–97. https://doi.org/10.1128/JB.00628-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brecik M, Centárová I, Mukherjee R, Kolly GS, Huszár S, Bobovská S, et al. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem Biol. 2015;10:1631–6. https://doi.org/10.1021/acschembio.5b00237.

    Article  CAS  PubMed  Google Scholar 

  56. Kumar K, Arora K, Lloyd JR, Lee Y III, Nair V, Fischer E, et al. Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol. 2012;86:367–81. https://doi.org/10.1111/j.1365-2958.2012.08199.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Forsman DL, Giske CG, Bruchfeld J, Schön T, Juréen P, Ängeby K. Meropenem-clavulanate has high in vitro activity against multidrug-resistant Mycobacterium tuberculosis. Int J Mycobacteriol. 2015;4:80–1. https://doi.org/10.1016/j.ijmyco.2014.10.018.

    Article  Google Scholar 

  58. Kim HS, Kim J, Im HN, Yoon JY, An DR, Yoon HJ, et al. Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. Acta Cryst. 2013;69:420–31. https://doi.org/10.1107/S0907444912048998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Kurosu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurosu, M. (2019). Cell Wall Biosynthesis and Latency During Tuberculosis Infections. In: Cirillo, J., Kong, Y. (eds) Tuberculosis Host-Pathogen Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25381-3_1

Download citation

Publish with us

Policies and ethics