Skip to main content

Towards Long-Term Autonomy Based on Temporal Planning

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11650))

Included in the following conference series:

  • 1993 Accesses

Abstract

This paper investigates the application of temporal planning to multiple robots in long-term missions, using the OPTIC and POPF temporal planners. We design a new planning domain, motivated by a realistic indoor-outdoor scenario. In particular, we investigate plan concurrency, makespan and plan generation time in the multi-robot problem and propose a schema which has been shown to improve plan quality while significantly reducing planning time for the multi-agent problem. Experiments are done in simulation using ROS and Gazebo, and demonstrated in missions with concurrent actions. The ROSPlan framework is also extended to work with multiple robots and used to integrate the planners in ROS. OPTIC provides the best overall solution considering the domain complexity and mission execution in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Domain and problem examples are available at https://github.com/MA-TemporalP.

  2. 2.

    In the following, we will use ?r to denote a parameter of type robot, ?wp a parameter of type waypoint, ?o a parameter of type observation_point, and ?s a parameter of type sensors.

References

  1. Benton, J., Coles, A.J., Coles, A.: Temporal planning with preferences and time-dependent continuous costs. In: International Conference on Automated Planning and Scheduling (2012)

    Google Scholar 

  2. Cashmore, M., Coles, A., Cserna, B., Karpas, E., Magazzeni, D., Ruml, W.: Situated planning for execution under temporal constraints. In: Learning, and Execution for Goal Directed Autonomy, AAAI Spring Symposium on Integrating Representation, Reasoning (2018)

    Google Scholar 

  3. Cashmore, M., et al.: ROSPlan: planning in the robot operating system. In: International Conference on Automated Planning and Scheduling, pp. 333–341 (2015)

    Google Scholar 

  4. Chanel, C.P.C., Lesire, C., Teichteil-Königsbuch, F.: A robotic execution framework for online probabilistic (re)planning. In: Proceedings of ICAPS (2014)

    Google Scholar 

  5. Chrpa, L., Pinto, J., Ribeiro, M.A., Py, F., Sousa, J., Rajan, K.: On mixed-initiative planning and control for autonomous underwater vehicles. In: IROS, pp. 1685–1690 (2015)

    Google Scholar 

  6. Coles, A.J., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. In: ICAPS, pp. 42–49 (2010)

    Google Scholar 

  7. Crosby, M., Petrick, R: Temporal multiagent planning with concurrent action constraints. In: ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP) (2014)

    Google Scholar 

  8. De Weerdt, M., Ter Mors, A., Witteveen, C.: Multi-agent planning: an introduction to planning and coordination. In: Handouts of the European Agent Summer. Citeseer (2005)

    Google Scholar 

  9. Della Penna, G., Magazzeni, D., Mercorio, F.: A universal planning system for hybrid domains. Appl. Intell. 36(4), 932–959 (2012)

    Article  Google Scholar 

  10. Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuristic for temporal and numeric planning. In: Towards Service Robots for Everyday Environments, pp. 49–64 (2012)

    Google Scholar 

  11. Fernandez-Gonzalez, E., Williams, B., Karpas, E.: ScottyActivity: mixed discrete-continuous planning with convex optimization. JAIR 62, 579–664 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. JAIR 20, 61–124 (2003)

    Article  Google Scholar 

  13. Ingham, M., Ragno, R., Williams, B.C.: A reactive model-based programming language for robotic space explorers. In: Proceedings of ISAIRAS-01 (2001)

    Google Scholar 

  14. Marques, T., Pinto, J., Dias, P., de Sousa, J.T.: MvPlanning: a framework for planning and coordination of multiple autonomous vehicles. In: OCEANS-Anchorage, pp. 1–6 (2017)

    Google Scholar 

  15. McDermott, D., et al.: PDDL - the planning domain definition language (version 1.2). Technical report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  16. McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A deliberative architecture for AUV control. In: IEEE International Conference on Robotics and Automation, pp. 1049–1054 (2008)

    Google Scholar 

  17. Muscettola, N., Dorais, G.A., Fry, C., Levinson, R., Plaunt, C.: IDEA: planning at the core of autonomous reactive agents. In: NASA Workshop on Planning and Scheduling for Space (2002)

    Google Scholar 

  18. Nunes, E., Gini, M.L.: Multi-robot auctions for allocation of tasks with temporal constraints. In: AAAI, pp. 2110–2116 (2015)

    Google Scholar 

  19. Nunes, E., McIntire, M., Gini, M.: Decentralized multi-robot allocation of tasks with temporal and precedence constraints. Adv. Robot. 31(22), 1193–1207 (2017)

    Article  Google Scholar 

  20. Piotrowski, W., Fox, M., Long, D., Magazzeni, D., Mercorio, F.: Heuristic planning for hybrid systems. In: AAAI, pp. 4254–4255 (2016)

    Google Scholar 

  21. Ponda, S., Redding, J., Choi, H.-L., How, J.P., Vavrina, M., Vian, J.: Decentralized planning for complex missions with dynamic communication constraints. In: American Control Conference, pp. 3998–4003 (2010)

    Google Scholar 

  22. Quigley, M., et al.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  23. Schillinger, P., Bürger, M., Dimarogonas, D.V.: Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems. Int. J. Robot. Res. 37, 818–838 (2017)

    Article  Google Scholar 

  24. Tran, T.T., Vaquero, T., Nejat, G., Beck, J.C.: Robots in retirement homes: applying off-the-shelf planning and scheduling to a team of assistive robots. JAIR 58, 523–590 (2017)

    Article  MathSciNet  Google Scholar 

  25. Veloso, M.M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: robust symbiotic autonomous mobile service robots. In: IJCAI, p. 4423 (2015)

    Google Scholar 

  26. Zhang, Z., Wang, J., Xu, D., Meng, Y.: Task allocation of multi-AUVs based on innovative auction algorithm. In: Proceedings of ISCID, vol. 2, pp. 83–88. IEEE (2017)

    Google Scholar 

  27. Hawes, N., et al.: The strands project: long-term autonomy in everyday environments. IEEE Robot. Autom. Mag. 24(3), 146–156 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaniel Carreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carreno, Y., Petrick, R.P.A., Petillot, Y. (2019). Towards Long-Term Autonomy Based on Temporal Planning. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11650. Springer, Cham. https://doi.org/10.1007/978-3-030-25332-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25332-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25331-8

  • Online ISBN: 978-3-030-25332-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics