Skip to main content

Short- and Long-Term ICU-Acquired Immunosuppression

  • Chapter
  • First Online:
Post-Intensive Care Syndrome

Part of the book series: Lessons from the ICU ((LEICU))

Abstract

Acute severe injuries such as sepsis, trauma, severe hemorrhage, major surgery or cardiac arrest account for most of the ICU admission. Thanks to advances in life support tools and knowledge, to technical progress, a majority of patients now survive the first days of their injury but are then exposed to the development of ICU-acquired infections that are associated with significant morbidity and mortality [1, 2]. The increasing burden of nosocomial infections and the emergence of multidrug resistant bacteria call to urgent progress in preventive treatment of ICU-acquired infections. Although the prolonged use of invasive medical devices and the selection of resistant bacteria remain important determinants of ICU-acquired infections, there is increasing evidence that some acquired immune dysfunctions might contribute to the increased susceptibility to secondary infections despite recovery from the primary insult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daviaud F, Grimaldi D, Dechartres A, Charpentier J, Geri G, Marin N, et al. Timing and causes of death in septic shock. Ann Intensive Care. [Internet]. 2015 [cited 2018 Jun 25];5(1). Available from: http://www.annalsofintensivecare.com/content/5/1/16

  2. Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K, Reinhart K, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care. 2011;15(4):R183.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bouadma L, Deslandes E, Lolom I, Le Corre B, Mourvillier B, Regnier B, et al. Long-term impact of a multifaceted prevention program on ventilator-associated pneumonia in a medical intensive care unit. Clin Infect Dis. 2010;51(10):1115–22.

    Article  PubMed  Google Scholar 

  4. Tortorano AM, Dho G, Prigitano A, Breda G, Grancini A, Emmi V, et al. Invasive fungal infections in the intensive care unit: a multicentre, prospective, observational study in Italy (2006–2008): fungal infections in intensive care unit. Mycoses. 2012;55(1):73–9.

    Article  PubMed  Google Scholar 

  5. Taccone F, Van den Abeele A-M, Bulpa P, Misset B, Meersseman W, Cardoso T, et al. Epidemiology of invasive aspergillosis in critically ill patients: clinical presentation, underlying conditions, and outcomes. Crit Care. 2015;19(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, Gibran NS, Huang ML, Santo Hayes TK, Corey L, Boeckh M. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008;300(4):413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luyt C-E, Combes A, Deback C, Aubriot-Lorton M-H, Nieszkowska A, Trouillet J-L, et al. Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am J Respir Crit Care Med. 2007;175(9):935–42.

    Article  PubMed  Google Scholar 

  8. Pène F, Ait-Oufella H, Taccone FS, Monneret G, Sharshar T, Tamion F, et al. Insights and limits of translational research in critical care medicine. Ann Intensive Care. [Internet]. 2015 [cited 2018 Jun 25];5(1). Available from: http://www.annalsofintensivecare.com/content/5/1/8

  9. Grimaldi D, Llitjos JF, Pène F. Post-infectious immune suppression: a new paradigm of severe infections. Médecine Mal Infect. 2014;44(10):455–63.

    Article  CAS  Google Scholar 

  10. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guignant C, Lepape A, Huang X, Kherouf H, Denis L, Poitevin F, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15(2):R99.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Landelle C, Lepape A, Voirin N, Tognet E, Venet F, Bohé J, et al. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med. 2010;36(11):1859–66.

    Article  CAS  PubMed  Google Scholar 

  13. Conway Morris A, Datta D, Shankar-Hari M, Stephen J, Weir CJ, Rennie J, et al. Cell-surface signatures of immune dysfunction risk-stratify critically ill patients: INFECT study. Intensive Care Med. 2018;44(5):627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cavaillon J-M, Adib-Conquy M. Monocytes/macrophages and sepsis. Crit Care Med. 2005;33(12 Suppl):S506–9.

    Article  PubMed  Google Scholar 

  15. Hotchkiss RS, Tinsley KW, Swanson PE, Grayson MH, Osborne DF, Wagner TH, et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol Baltim Md 1950. 2002;168(5):2493–500.

    CAS  Google Scholar 

  16. Guisset O, Dilhuydy M-S, Thiébaut R, Lefèvre J, Camou F, Sarrat A, et al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med. 2007;33(1):148–52.

    Article  PubMed  Google Scholar 

  17. Grimaldi D, Louis S, Pène F, Sirgo G, Rousseau C, Claessens YE, et al. Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock. Intensive Care Med. 2011;37(9):1438–46.

    Article  CAS  PubMed  Google Scholar 

  18. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Hui JJ, Chang KC, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol Baltim Md 1950. 2001;166(11):6952–63.

    CAS  Google Scholar 

  19. Girardot T, Rimmelé T, Venet F, Monneret G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis. 2017;22(2):295–305.

    Article  CAS  PubMed  Google Scholar 

  20. Drewry AM, Samra N, Skrupky LP, Fuller BM, Compton SM, Hotchkiss RS. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock. 2014;42(5):383–91.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grimaldi D, Le Bourhis L, Sauneuf B, Dechartres A, Rousseau C, Ouaaz F, et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med. 2014;40(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  22. Kushwah R, Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci. 2011;1(1):20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Venet F, Pachot A, Debard A-L, Bohé J, Bienvenu J, Lepape A, et al. Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25- lymphocytes. Crit Care Med. 2004;32(11):2329–31.

    Article  PubMed  Google Scholar 

  24. Venet F, Chung C-S, Kherouf H, Geeraert A, Malcus C, Poitevin F, et al. Increased circulating regulatory T cells (CD4+CD25+CD127−) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med. 2009;35(4):678–86.

    Article  PubMed  Google Scholar 

  25. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19(2):108–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Uhel F, Azzaoui I, Grégoire M, Pangault C, Dulong J, Tadié J-M, et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am J Respir Crit Care Med. 2017;196(3):315–27.

    Article  CAS  PubMed  Google Scholar 

  27. Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE, Mohr AM, et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg. 2017;265(4):827–34.

    Article  PubMed  Google Scholar 

  28. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci. 2013;110(9):3507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asehnoune K, Roquilly A, Abraham E. Innate immune dysfunction in trauma patients: from pathophysiology to treatment. Anesthesiology. 2012;117(2):411–6.

    Article  PubMed  Google Scholar 

  30. Lukaszewicz A-C, Grienay M, Resche-Rigon M, Pirracchio R, Faivre V, Boval B, et al. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction∗. Crit Care Med. 2009;37(10):2746–52.

    CAS  PubMed  Google Scholar 

  31. Prescott HC, Angus DC. Enhancing recovery from Sepsis: a review. JAMA. 2018;319(1):62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kahn JM, Le T, Angus DC, Cox CE, Hough CL, White DB, et al. The epidemiology of chronic critical illness in the United States∗. Crit Care Med. 2015;43(2):282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Quartin AA, Schein RM, Kett DH, Peduzzi PN. Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Studies Group. JAMA. 1997;277(13):1058–63.

    Article  CAS  PubMed  Google Scholar 

  34. Linder A, Guh D, Boyd JH, Walley KR, Anis AH, Russell JA. Long-term (10-year) mortality of younger previously healthy patients with severe sepsis/septic shock is worse than that of patients with nonseptic critical illness and of the general population. Crit Care Med. 2014;42(10):2211–8.

    Article  PubMed  Google Scholar 

  35. Prescott HC, Osterholzer JJ, Langa KM, Angus DC, Iwashyna TJ. Late mortality after sepsis: propensity matched cohort study. BMJ. 2016;353:i2375.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Prescott HC, Langa KM, Iwashyna TJ. Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions. JAMA. 2015;313(10):1055.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shen H-N, Lu C-L, Yang H-H. Risk of recurrence after surviving severe sepsis: a matched Cohort study. Crit Care Med. 2016;44(10):1833–41.

    Article  PubMed  Google Scholar 

  38. Wang T, Derhovanessian A, De Cruz S, Belperio JA, Deng JC, Hoo GS. Subsequent infections in survivors of Sepsis: epidemiology and outcomes. J Intensive Care Med. 2014;29(2):87–95.

    Article  PubMed  Google Scholar 

  39. Yende S, Linde-Zwirble W, Mayr F, Weissfeld LA, Reis S, Angus DC. Risk of cardiovascular events in survivors of severe sepsis. Am J Respir Crit Care Med. 2014;189(9):1065–74.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ou S-M, Chu H, Chao P-W, Lee Y-J, Kuo S-C, Chen T-J, et al. Long-term mortality and major adverse cardiovascular events in sepsis survivors. A Nationwide population-based study. Am J Respir Crit Care Med. 2016;194(2):209–17.

    Article  PubMed  Google Scholar 

  41. Titmarsh GJ, McMullin MF, McShane CM, Clarke M, Engels EA, Anderson LA. Community-acquired infections and their association with myeloid malignancies. Cancer Epidemiol. 2014;38(1):56–61.

    Article  PubMed  Google Scholar 

  42. Kristinsson SY, Björkholm M, Hultcrantz M, Derolf ÅR, Landgren O, Goldin LR. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol. 2011;29(21):2897–903.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boursi B, Mamtani R, Haynes K, Yang Y-X. Recurrent antibiotic exposure may promote cancer formation – another step in understanding the role of the human microbiota? Eur J Cancer. 2015;51(17):2655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Z, Mahale P, Engels EA. Sepsis and risk of cancer among elderly adults in the United States. Clin Infect Dis. [Internet]. 2018 [cited 2018 Sep 12]. Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciy530/5049133

  45. Mokart D, Giaoui E, Barbier L, Lambert J, Sannini A, Chow-Chine L, et al. Postoperative sepsis in cancer patients undergoing major elective digestive surgery is associated with increased long-term mortality. J Crit Care. 2016;31(1):48–53.

    Article  PubMed  Google Scholar 

  46. Frencken JF, van Vught LA, Peelen LM, Ong DSY, Klein Klouwenberg PMC, Horn J, et al. An unbalanced inflammatory cytokine response is not associated with mortality following sepsis: a prospective cohort study. Crit Care Med. 2017;45(5):e493–9.

    Article  CAS  PubMed  Google Scholar 

  47. Riché F, Chousterman BG, Valleur P, Mebazaa A, Launay J-M, Gayat E. Protracted immune disorders at one year after ICU discharge in patients with septic shock. Crit Care. [Internet]. 2018 [cited 2018 Aug 23];22(1). Available from: https://ccforum.biomedcentral.com/articles/10.1186/s13054-017-1934-4

  48. Zorio V, Venet F, Delwarde B, Floccard B, Marcotte G, Textoris J, et al. Assessment of sepsis-induced immunosuppression at ICU discharge and 6 months after ICU discharge. Ann Intensive Care. [Internet]. 2017 [cited 2018 Aug 23];7(1). Available from: http://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-017-0304-3

  49. Shalova IN, Lim JY, Chittezhath M, Zinkernagel AS, Beasley F, Hernández-Jiménez E, et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity. 2015;42(3):484–98.

    Article  CAS  PubMed  Google Scholar 

  50. Prescott HC, Dickson RP, Rogers MAM, Langa KM, Iwashyna TJ. Hospitalization type and subsequent severe sepsis. Am J Respir Crit Care Med. 2015;192(5):581–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baggs J, Jernigan JA, Halpin AL, Epstein L, Hatfield KM, McDonald LC. Risk of subsequent sepsis within 90 days after a hospital stay by type of antibiotic exposure. Clin Infect Dis. 2018;66(7):1004–12.

    Article  CAS  PubMed  Google Scholar 

  52. Yende S, D’Angelo G, Kellum JA, Weissfeld L, Fine J, Welch RD, et al. Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care Med. 2008;177(11):1242–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kaynar AM, Yende S, Zhu L, Frederick DR, Chambers R, Burton CL, et al. Effects of intra-abdominal sepsis on atherosclerosis in mice. Crit Care [Internet]. 2014 [cited 2018 Aug 23];18(5). Available from: http://ccforum.biomedcentral.com/articles/10.1186/s13054-014-0469-1.

  54. Cavassani KA, Carson WF, Moreira AP, Wen H, Schaller MA, Ishii M, et al. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood. 2010;115(22):4403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mota JM, Leite CA, Souza LE, Melo PH, Nascimento DC, de-Deus-Wagatsuma VM, et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice. Cancer Immunol Res. 2016;4(4):312–22.

    Article  CAS  PubMed  Google Scholar 

  56. Llitjos J-F, Auffray C, Alby-Laurent F, Rousseau C, Merdji H, Bonilla N, et al. Sepsis-induced expansion of granulocytic myeloid-derived suppressor cells promotes tumour growth through toll-like receptor 4: sepsis-induced MDSC and tumour growth. J Pathol. 2016;239(4):473–83.

    Article  CAS  PubMed  Google Scholar 

  57. Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15(6):382–96.

    Article  CAS  PubMed  Google Scholar 

  58. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.

    Article  CAS  PubMed  Google Scholar 

  59. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Monneret G, Lepape A, Voirin N, Bohé J, Venet F, Debard A-L, et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 2006;32(8):1175–83.

    Article  PubMed  Google Scholar 

  61. Döcke WD, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke P, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3(6):678–81.

    Article  PubMed  Google Scholar 

  62. Sarrafzadeh A, Schlenk F, Meisel A, Dreier J, Vajkoczy P, Meisel C. Immunodepression after aneurysmal subarachnoid hemorrhage. Stroke. 2011;42(1):53–8.

    Article  PubMed  Google Scholar 

  63. Venet F, Cour M, Demaret J, Monneret G, Argaud L. Decreased monocyte HLA-DR expression in patients after non-shockable out-of-hospital cardiac arrest. Shock. 2016;46(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  64. Yang H, Yu Y, Chai J, Hu S, Sheng Z, Yao Y. Low HLA-DR expression on CD14+ monocytes of burn victims with sepsis, and the effect of carbachol in vitro. Burns. 2008;34(8):1158–62.

    Article  PubMed  Google Scholar 

  65. Galbraith N, Walker S, Galandiuk S, Gardner S, Polk HC. The significance and challenges of monocyte impairment: for the ill patient and the surgeon. Surg Infect. 2016;17(3):303–12.

    Article  Google Scholar 

  66. Poehlmann H, Schefold JC, Zuckermann-Becker H, Volk H-D, Meisel C. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit Care. 2009;13(4):R119.

    Article  PubMed  PubMed Central  Google Scholar 

  67. D’Arpa N, Accardo-Palumbo A, Amato G, D’Amelio L, Pileri D, Cataldo V, et al. Circulating dendritic cells following burn. Burns. 2009;35(4):513–8.

    Article  PubMed  Google Scholar 

  68. Villois P, Grimaldi D, Spadaro S, Shinotsuka CR, Fontana V, Scolletta S, et al. Lymphopaenia in cardiac arrest patients. Ann Intensive Care [Internet]. 2017;7:85. [cited 2018 Aug 22];7(1). Available from: http://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-017-0308-z

    Article  PubMed  PubMed Central  Google Scholar 

  69. Leng F-Y, Liu J-L, Liu Z-J, Yin J-Y, Qu H-P. Increased proportion of CD4+CD25+Foxp3+ regulatory T cells during early-stage sepsis in ICU patients. J Microbiol Immunol Infect. 2013;46(5):338–44.

    Article  CAS  PubMed  Google Scholar 

  70. MacConmara MP, Maung AA, Fujimi S, McKenna AM, Delisle A, Lapchak PH, et al. Increased CD4+ CD25+ T regulatory cell activity in trauma patients depresses protective Th1 immunity. Ann Surg. 2006;244(4):514–23.

    PubMed  PubMed Central  Google Scholar 

  71. Huang L, Yao Y, Dong N, Yu Y, He L, Sheng Z. Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study. Crit Care. 2010;14(1):R3.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chang K, Svabek C, Vazquez-Guillamet C, Sato B, Rasche D, Wilson S, et al. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care. 2014;18(1):R3.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shubin NJ, Monaghan SF, Heffernan DS, Chung C-S, Ayala A. B and T lymphocyte attenuator expression on CD4+ T-cells associates with sepsis and subsequent infections in ICU patients. Crit Care. 2013;17(6):R276.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lange A, Sundén-Cullberg J, Magnuson A, Hultgren O. Soluble B and T lymphocyte attenuator correlates to disease severity in Sepsis and high levels are associated with an increased risk of mortality. PLoS One. 2017;12(1):e0169176, Bouchama A, editor

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pène .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 European Society of Intensive Care Medicine

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grimaldi, D., Pène, F. (2020). Short- and Long-Term ICU-Acquired Immunosuppression. In: Preiser, JC., Herridge, M., Azoulay, E. (eds) Post-Intensive Care Syndrome. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-030-24250-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24250-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24249-7

  • Online ISBN: 978-3-030-24250-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics