Skip to main content

Instrumentation for Stone Disease

  • Chapter
  • First Online:
Minimally Invasive Urology

Abstract

As endourologists, the procedures we perform are tied closely together with the equipment we use. The surgeon’s skill and expertise are essential, but without the right tools for the job, the procedures will be either much more difficult or not possible at all. Therefore, having a comprehensive understanding of capital equipment including camera and video systems, endoscopes, and lithotrites is essential. Furthermore, there has been a vast expansion in the number of disposable products used including different types of guidewires and stone baskets, ureteral access sheaths, and now even single-use endoscopes. Understanding what devices are available and how they might aid in different situations will help arm endourologists with the knowledge and tools to be able to care best for their patients.

In this chapter, I will review both capital equipment as well as some of the disposable equipment used for percutaneous nephrolithotomy and for ureteroscopic procedures. Given that often multiple manufacturers produce similar products, I will discuss some products in generic terms but in other cases go in more specific examples. This chapter is intended to provide an overview into available equipment, but given that this is an ever-evolving field, new products will invariably become available soon after publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spradling K, Uribe B, Okhunov Z, Hofmann M, Del Junco M, Hwang C, et al. Evaluation of ignition and burn risk associated with contemporary fiberoptic and distal sensor endoscopic technology. J Endourol. 2015;29(9):1076–82.

    Article  PubMed  Google Scholar 

  2. Gono K. Narrow band imaging: technology basis and research and development history. Clin Endosc. 2015;48(6):476–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dalgaard LP, Zare R, Gaya JM, Redorta JP, Roumiguié M, Filleron T, Malavaud B. Prospective evaluation of the performances of narrow-band imaging flexible videoscopy relative to white-light imaging flexible videoscopy, in patients scheduled for transurethral resection of a primary NMIBC. World J Urol. 2018; https://doi.org/10.1007/s00345-018-2537-7. [Epub ahead of print].

    Article  PubMed  CAS  Google Scholar 

  4. Kim SB, Yoon SG, Tae J, Kim JY, Shim JS, Kang SG, et al. Detection and recurrence rate of transurethral resection of bladder tumors by narrow-band imaging: prospective, randomized comparison with white light cystoscopy. Investig Clin Urol. 2018;59(2):98–105.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Daneshmand S, Bazargani ST, Bivalacqua TJ, Holzbeierlein JM, Willard B, Taylor JM, Blue Light Cystoscopy with Cysview Registry Group, et al. Blue light cystoscopy for the diagnosis of bladder cancer: results from the US prospective multicenter registry. Urol Oncol. 2018;36(8):361.e1–6.

    Article  Google Scholar 

  6. Andonian S, Okeke Z, Anidjar M, Smith AD. Digital nephroscopy: the next step. J Endourol. 2008;22(4):601–2.

    Article  PubMed  Google Scholar 

  7. Jackman SV, Docimo SG, Cadeddu JA, Bishoff JT, Kavoussi LR, Jarrett TW. The “mini-perc” technique: a less invasive alternative to percutaneous nephrolithotomy. World J Urol. 1998;16(6):371–4.

    Article  CAS  PubMed  Google Scholar 

  8. Grasso M, Bagley D. Small diameter, actively deflectable, flexible ureteropyeloscopy. J Urol. 1998;160(5):1648–53; discussion 1653–54.

    Article  CAS  PubMed  Google Scholar 

  9. Sofer M, Denstedt J. Flexible ureteroscopy and lithotripsy with the Holmium:YAG laser. Can J Urol. 2000;7(1):952–6.

    CAS  PubMed  Google Scholar 

  10. also M, Proietti S, Emiliani E, Gallioli A, Dragos L, Orosa A, et al. Comparison of flexible ureterorenoscope quality of vision: an in vitro study. J Endourol. 2018;32(6):523–8.

    Article  Google Scholar 

  11. Huynh M, Telfer S, Pautler S, Denstedt J, Razvi H. Retained digital flexible ureteroscopes. J Endourol Case Rep. 2017;3(1):24–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reisiger K, Hruby G, Clayman RV, Landman J. Office-based surveillance ureteroscopy after endoscopic treatment of transitional cell carcinoma: technique and clinical outcome. Urology. 2007;70(2):263–6.

    Article  PubMed  Google Scholar 

  13. Humphreys MR, Miller NL, Williams JC Jr, Evan AP, Munch LC, Lingeman JE. A new world revealed: early experience with digital ureteroscopy. J Urol. 2008;179(3):970–5.

    Article  PubMed  Google Scholar 

  14. Aslan P, Kuo RL, Hazel K, Babayan RK, Preminger GM. Advances in digital imaging during endoscopic surgery. J Endourol. 1999;13(4):251–5.

    Article  CAS  PubMed  Google Scholar 

  15. Shah K, Monga M, Knudsen B. Prospective randomized trial comparing 2 flexible digital ureteroscopes: ACMI/Olympus Invisio DUR-D and Olympus URF-V. Urology. 2015;85(6):1267–71.

    Article  PubMed  Google Scholar 

  16. Dragos LB, Somani BK, Sener ET, Buttice S, Proietti S, Ploumidis A, et al. Which flexible ureteroscopes (digital vs. fiber-optic) can easily reach the difficult lower pole calices and have better end-tip deflection: in vitro study on K-Box. A PETRA evaluation. J Endourol. 2017;31(7):630–7.

    Article  PubMed  Google Scholar 

  17. Multescu R, Geavlete B, Georgescu D, Geavlete P. Conventional fiberoptic flexible ureteroscope versus fourth generation digital flexible ureteroscope: a critical comparison. J Endourol. 2010;24(1):17–21.

    Article  PubMed  Google Scholar 

  18. Somani BK, Al-Qahtani SM, de Medina SD, Traxer O. Outcomes of flexible ureterorenoscopy and laser fragmentation for renal stones: comparison between digital and conventional ureteroscope. Urology. 2013;82(5):1017–9.

    Article  PubMed  Google Scholar 

  19. Binbay M, Yuruk E, Akman T, Ozgor F, Seyrek M, Ozkuvanci U, et al. Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J Endourol. 2010;24(12):1929–34.

    Article  PubMed  Google Scholar 

  20. Alexander B, Fishman AI, Grasso M. Ureteroscopy and laser lithotripsy: technologic advancements. World J Urol. 2015;33(2):247–56.

    Article  CAS  PubMed  Google Scholar 

  21. Talso M, Emiliani E, Haddad M, Berthe L, Baghdadi M, Montanari E, Traxer O. Laser fiber and flexible ureterorenoscopy: the safety distance concept. J Endourol. 2016;30(12):1269–74.

    Article  PubMed  Google Scholar 

  22. Afane JS, Olweny EO, Bercowsky E, Sundaram CP, Dunn MD, Shalhav AL, et al. Flexible ureteroscopes: a single center evaluation of the durability and function of the new endoscopes smaller than 9Fr. J Urol. 2000;164(4):1164–8.

    Article  CAS  PubMed  Google Scholar 

  23. Pietrow PK, Auge BK, Delvecchio FC, Silverstein AD, Weizer AZ, Albala DM, Preminger GM. Techniques to maximize flexible ureteroscope longevity. Urology. 2002;60(5):784–8.

    Article  PubMed  Google Scholar 

  24. Knudsen B, Miyaoka R, Shah K, Holden T, Turk TM, Pedro RN, et al. Durability of the next-generation flexible fiberoptic ureteroscopes: a randomized prospective multi-institutional clinical trial. Urology. 2010;75(3):534–8.

    Article  PubMed  Google Scholar 

  25. Kramolowsky E, McDowell Z, Moore B, Booth B, Wood N. Cost analysis of flexible ureteroscope repairs: evaluation of 655 procedures in a community-based practice. J Endourol. 2016;30(3):254–6.

    Article  PubMed  Google Scholar 

  26. Dale J, Kaplan AG, Radvak D, Shin R, Ackerman A, Chen T, et al. Evaluation of a novel single-use flexible ureteroscope. J Endourol. 2017. https://www.ncbi.nlm.nih.gov/pubmed/27981862?report=docsum

  27. Scotland KB, Chan JYH, Chew BH. Single-use flexible ureteroscopes: how do they compare with reusable ureteroscopes? J Endourol. 2019;33(2):71–8.

    Article  PubMed  Google Scholar 

  28. Usawachintachit M, Isaacson DS, Taguchi K, Tzou DT, Hsi RS, Sherer BA, et al. A prospective case-control study comparing LithoVue, a single-use, flexible disposable ureteroscope, with flexible, reusable fiber-optic ureteroscopes. J Endourol. 2017;31(5):468–75.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Martin CJ, McAdams SB, Abdul-Muhsin H, Lim VM, Nunez-Nateras R, Tyson MD, Humphreys MR. The economic implications of a reusable flexible digital ureteroscope: a cost-benefit analysis. J Urol. 2017;197(3 Pt 1):730–5.

    Article  PubMed  Google Scholar 

  30. Taguchi K, Usawachintachit M, Tzou DT, Sherer BA, Metzler I, Isaacson D, et al. Micro-costing analysis demonstrates comparable costs for lithovue compared to reusable flexible fiberoptic ureteroscopes. J Endourol. 2018;32(4):267–73.

    Article  PubMed  Google Scholar 

  31. Denstedt JD, Eberwein PM, Singh RR. The Swiss Lithoclast: a new device for intracorporeal lithotripsy. J Urol. 1992;148(3 Pt 2):1088–90.

    Article  CAS  PubMed  Google Scholar 

  32. Denstedt JD, Razvi HA, Rowe E, Grignon DJ, Eberwein PM. Investigation of the tissue effects of a new device for intracorporeal lithotripsy--the Swiss Lithoclast. J Urol. 1995;153(2):535–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lowe G, Knudsen BE. Ultrasonic, pneumatic and combination intracorporeal lithotripsy for percutaneous nephrolithotomy. J Endourol. 2009;23(10):1663–8.

    Article  PubMed  Google Scholar 

  34. Terhorst B. The effect of electrohydraulic waves and ultrasound on the urothelium. Urologe A. 1975;14(1):41–5. [Article in German].

    CAS  PubMed  Google Scholar 

  35. Borofsky MS, El Tayeb MM, Paonessa JE, Lingeman JE. Initial experience and comparative efficacy of the UreTron: a new intracorporeal ultrasonic lithotriptor. Urology. 2015;85(6):1279–83.

    Article  PubMed  Google Scholar 

  36. Pietrow PK, Auge BK, Zhong P, Preminger GM. Clinical efficacy of a combination pneumatic and ultrasonic lithotrite. J Urol. 2003;169(4):1247–9.

    Article  PubMed  Google Scholar 

  37. Lehman DS, Hruby GW, Phillips C, Venkatesh R, Best S, Monga M, Landman J. Prospective randomized comparison of a combined ultrasonic and pneumatic lithotrite with a standard ultrasonic lithotrite for percutaneous nephrolithotomy. J Endourol. 2008;22(2):285–9.

    Article  PubMed  Google Scholar 

  38. York NE, Borofsky MS, Chew BH, Dauw CA, Paterson RF, Denstedt JD, et al. Randomized controlled trial comparing three different modalities of lithotrites for intracorporeal lithotripsy in percutaneous nephrolithotomy. J Endourol. 2017;31(11):1145–51.

    Article  PubMed  Google Scholar 

  39. Chew BH, Matteliano AA, de Los Reyes T, Lipkin ME, Paterson RF, Lange D. Benchtop and initial clinical evaluation of the ShockPulse stone eliminator in percutaneous nephrolithotomy. J Endourol. 2017;31(2):191–7.

    Article  PubMed  Google Scholar 

  40. Carlos EC, Wollin DA, Winship BB, Jiang R, Radvak D, Chew BH, et al. In vitro comparison of a novel single probe dual-energy lithotripter to current devices. J Endourol. 2018;32(6):534–40.

    Article  PubMed  Google Scholar 

  41. Sofer M, Watterson JD, Wollin TA, Nott L, Razvi H, Denstedt JD. Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J Urol. 2002;167(1):31–4.

    Article  PubMed  Google Scholar 

  42. Vassar GJ, Chan KF, Teichman JM, Glickman RD, Weintraub ST, Pfefer TJ, Welch AJ. Holmium:YAG lithotripsy: photothermal mechanism. J Endourol. 1999;13(3):181–90.

    Article  CAS  PubMed  Google Scholar 

  43. Fraundorfer MR, Gilling PJ. Holmium:YAG laser enucleation of the prostate combined with mechanical morcellation: preliminary results. Eur Urol. 1998;33(1):69–72.

    Article  CAS  PubMed  Google Scholar 

  44. Finley DS, Petersen J, Abdelshehid C, Ahlering M, Chou D, Borin J, et al. Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro. J Endourol. 2005;19(8):1041–4.

    Article  PubMed  Google Scholar 

  45. Doizi S, Keller EX, De Coninck V, Traxer O. Dusting technique for lithotripsy: what does it mean? Nat Rev Urol. 2018;15(11):653–4.

    Article  PubMed  Google Scholar 

  46. Becker B, Gross AJ, Netsch C. Safety and efficacy using a low-powered holmium laser for enucleation of the prostate (HoLEP): 12-month results from a prospective low-power HoLEP series. World J Urol. 2018;36(3):441–7.

    Article  CAS  PubMed  Google Scholar 

  47. Kuo RL, Paterson RF, Kim SC, Siqueira TM Jr, Elhilali MM, Lingeman JE. Holmium laser enucleation of the prostate (HoLEP): a technical update. World J Surg Oncol. 2003;1(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wollin DA, Ackerman A, Yang C, Chen T, Simmons WN, Preminger GM, Lipkin ME. Variable pulse duration from a new holmium:YAG laser: the effect on stone comminution, fiber tip degradation, and retropulsion in a dusting model. Urology. 2017;103:47–51.

    Article  PubMed  Google Scholar 

  49. Elhilali MM, Badaan S, Ibrahim A, Andonian S. Use of the Moses technology to improve holmium laser lithotripsy outcomes: a preclinical study. J Endourol. 2017;31(6):598–604.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Winship B, Wollin D, Carlos E, Li J, Peters C, Simmons WN, et al. Dusting efficiency of the Moses holmium laser: an automated in vitro assessment. J Endourol. 2018;32(12):1131–5.

    Article  PubMed  Google Scholar 

  51. Stern KL, Monga M. The Moses holmium system – time is money. Can J Urol. 2018;25(3):9313–6.

    PubMed  Google Scholar 

  52. Marks AJ, Mues AC, Knudsen BE, Teichman JM. Holmium:yttrium-aluminum-garnet lithotripsy proximal fiber failures from laser and fiber mismatch. Urology. 2008;71(6):1049–51.

    Article  PubMed  Google Scholar 

  53. Carlos EC, Li J, Young BJ, Radvak D, Wollin DA, Winship BB, et al. Let’s get to the point: comparing insertion characteristics and scope damage of flat-tip and ball-tip holmium laser fibers. J Endourol. 2019;33(1):22–6.

    Article  PubMed  Google Scholar 

  54. Akar EC, Knudsen BE. Evaluation of 16 new holmium:yttrium-aluminum-garnet laser optical fibers for ureteroscopy. Urology. 2015;86(2):230–5.

    Article  PubMed  Google Scholar 

  55. Dormia E. Dormia basket: standard technique, observations, and general concepts. Urology. 1982;20(4):437.

    Article  CAS  PubMed  Google Scholar 

  56. Honey RJ. Assessment of a new tipless nitinol stone basket and comparison with an existing flat-wire basket. J Endourol. 1998;12(6):529–31.

    Article  CAS  PubMed  Google Scholar 

  57. Chenven ES, Bagley DH. Retrieval and releasing capabilities of stone-basket designs in vitro. J Endourol. 2005;19(2):204–9.

    Article  PubMed  Google Scholar 

  58. Zeltser IS, Bagley DH. Basket design as a factor in retention and release of calculi in vitro. J Endourol. 2007;21(3):337–42.

    Article  PubMed  Google Scholar 

  59. Bechis SK, Abbott JE, Sur RL. In vitro head-to-head comparison of the durability, versatility and efficacy of the NGage and novel Dakota stone retrieval baskets. Transl Androl Urol. 2017;6(6):1144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Torricelli FC, Marchini GS, Pedro RN, Monga M. Ureteroscopy for management of stone disease: an up to date on surgical technique and disposable devices. Minerva Urol Nefrol. 2016;68(6):516–26.

    PubMed  Google Scholar 

  61. Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T. EAU Guidelines on Interventional Treatment for Urolithiasis. Eur Urol. 2016;69(3):475–82.

    Article  PubMed  Google Scholar 

  62. Liguori G, Antoniolli F, Trombetta C, Biasotto M, Amodeo A, Pomara G, et al. Comparative experimental evaluation of guidewire use in urology. Urology. 2008;72(2):286–9; discussion 289–90.

    Article  PubMed  Google Scholar 

  63. Clayman M, Uribe CA, Eichel L, Gordon Z, McDougall EM, Clayman RV. Comparison of guide wires in urology. Which, when and why? J Urol. 2004;171(6 Pt 1):2146–50.

    Article  PubMed  Google Scholar 

  64. Torricelli FC, De S, Sarkissian C, Monga M. Hydrophilic guidewires: evaluation and comparison of their properties and safety. Urology. 2013;82(5):1182–6.

    Article  PubMed  Google Scholar 

  65. Auge BK, Pietrow PK, Lallas CD, Raj GV, Santa-Cruz RW, Preminger GM. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol. 2004;18(1):33–6.

    Article  PubMed  Google Scholar 

  66. Kourambas J, Byrne RR, Preminger GM. Does a ureteral access sheath facilitate ureteroscopy? J Urol. 2001;165(3):789–93.

    Article  CAS  PubMed  Google Scholar 

  67. Al-Qahtani SM, Letendre J, Thomas A, Natalin R, Saussez T, Traxer O. Which ureteral access sheath is compatible with your flexible ureteroscope? J Endourol. 2014;28(3):286–90.

    Article  PubMed  Google Scholar 

  68. Hendlin K, Weiland D, Monga M. Impact of irrigation systems on stone migration. J Endourol. 2008;22(3):453–8.

    Article  PubMed  Google Scholar 

  69. Hendlin K, Sarkissian C, Duffey B, Monga M. Systematic evaluation of a novel foot-pump ureteroscopic irrigation system. J Endourol. 2012;26(2):126–9.

    Article  PubMed  Google Scholar 

  70. Tarplin S, Byrne M, Farrell N, Monga M, Sivalingam S. Endoscopic valves and irrigation devices for flexible ureteroscopy: is there a difference? J Endourol. 2015;29(9):983–92.

    Article  PubMed  Google Scholar 

  71. De S, Torricelli FC, Sarkissian C, Kartha G, Monga M. Evaluating the automated Thermedx Fluid Management System in a ureteroscopy model. J Endourol. 2014;28(5):549–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knudsen, B.E. (2020). Instrumentation for Stone Disease. In: Best, S., Nakada, S. (eds) Minimally Invasive Urology. Springer, Cham. https://doi.org/10.1007/978-3-030-23993-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23993-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23992-3

  • Online ISBN: 978-3-030-23993-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics