Skip to main content

Comments on an Orthogonal Family of Monogenic Functions on Spheroidal Domains

  • Chapter
  • First Online:
Topics in Clifford Analysis

Part of the book series: Trends in Mathematics ((TM))

Abstract

The problem of building an orthogonal basis for the space of square-integrable harmonic functions defined in a spheroidal (either oblate or prolate) domain leads to special functions, which provide an elegant analysis of a variety of physical problems. Many generalizations of these ideas in the context of Quaternionic Analysis possess a similar elegant mathematical structure. A brief descriptive review is given of these developments.

Celebrating Wolfgang Sprößig 70th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Bock, Über funktionentheoretische Methoden in der räumlichen Elastizitätstheorie, Ph.D. thesis, Bauhaus-University Weimar (2009)

    Google Scholar 

  2. S. Bock, On a three dimensional analogue to the holomorphic z-powers: Laurent series expansions. Complex Var. Elliptic Equ. 57(12), 1271–1287 (2012)

    Article  MathSciNet  Google Scholar 

  3. S. Bock, On a three dimensional analogue to the holomorphic z-powers: power series and recurrence formulae. Complex Var. Elliptic Equ. 57(12), 1349–1370 (2012)

    Article  MathSciNet  Google Scholar 

  4. S. Bock, K. Gürlebeck, On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 33(4), 394–411 (2010)

    MathSciNet  MATH  Google Scholar 

  5. S. Bock, K. Gürlebeck, R. Lávička, V. Souček, The Gel’fand-Tsetlin bases for spherical monogenics in dimension 3. Rev. Mat. Iberoam. 28(4), 1165–1192 (2012)

    Article  MathSciNet  Google Scholar 

  6. W.E. Byerly, An Elementary Treatise on Fourier’s Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (Dover, New York, 1959), pp. 251–258

    MATH  Google Scholar 

  7. I. Cação, Constructive approximation by monogenic polynomials, Ph.D. dissertation, Universidade de Aveiro (2004)

    MATH  Google Scholar 

  8. I. Cação, Complete orthonormal sets of polynomial solutions of the Riesz and Moisil-Teodorescu systems in \(\mathbb {R}^3\). Numer. Algorithms 55(2–3), 191–203 (2010)

    Google Scholar 

  9. I. Cação, K. Gürlebeck, S. Bock, Complete orthonormal systems of spherical monogenics – a constructive approach, in Methods of Complex and Clifford Analysis, ed. by L.H. Son, et al. (SAS International Publications, Delhi, 2005), pp. 241–260

    Google Scholar 

  10. I. Cação, K. Gürlebeck, B. Bock, On derivatives of spherical monogenics. Complex Var. Elliptic Equ. 51(8–11), 847–869 (2006)

    Article  MathSciNet  Google Scholar 

  11. G. Darwin, Ellipsoidal harmonic analysis. Philos. Trans. R. Soc. A 197, 461–557 (1902)

    Article  Google Scholar 

  12. G. Dassios, Ellipsoidal Harmonics, Theory and Applications (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  13. R. Delanghe, On homogeneous polynomial solutions of the Riesz system and their harmonic potentials. Complex Var. Elliptic Equ. 52(10–11), 1047–1062 (2007)

    Article  MathSciNet  Google Scholar 

  14. L. Fejér, Über die Laplacesche Reihe. Math. Ann. 67, 76–109 (1909)

    Google Scholar 

  15. N.M. Ferrers, On the potentials of ellipsoids, ellipsoidal shells, elliptic laminae, and elliptic rings, of variable densities. Q. J. Pure Appl. Math. 14, 1–22 (1897)

    MATH  Google Scholar 

  16. P. Garabedian, Orthogonal harmonic polynomials. Pacific J. Math. 3(3), 585–603 (1953)

    Article  MathSciNet  Google Scholar 

  17. R. García, A.J. Morais, R.M. Porter, Contragenic functions on spheroidal domains. Math. Methods Appl. Sci. (2017). https://doi.org/10.1002/mma.4759

  18. K. Gürlebeck, H. Malonek, A hypercomplex derivative of monogenic functions in \(\mathbb {R}^{n+1}\) and its applications. Complex Var. Elliptic Equ. 39(3), 199–228 (1999)

    Google Scholar 

  19. K. Gürlebeck, J. Morais, Bohr type theorems for monogenic power series. Comput. Methods Funct. Theory 9(2), 633–651 (2009)

    Article  MathSciNet  Google Scholar 

  20. K. Gürlebeck, J. Morais, On Bohr’s phenomenon in the context of quaternionic analysis and related problems, in Algebraic Structures in Partial Differential Equations Related to Complex and Clifford Analysis, ed. by L.H. Son, T. Wolfgang (University of Education Press, Ho Chi Minh City, 2010), pp. 9–24

    MATH  Google Scholar 

  21. K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-Dimensional Space. Contemporary Mathematics, vol. 212 (Birkhäuser Verlag, Basel, 2008), pp. 95–107

    Google Scholar 

  22. K. Gürlebeck, J. Morais, P. Cerejeiras, Borel-Carathéodory type theorem for monogenic functions. Complex Anal. Oper. Theory 3(1), 99–112 (2009)

    Article  MathSciNet  Google Scholar 

  23. E. Heine, Handbuch der Kugelfunktionen (Verlag G. Reimer, Berlin, 1878)

    MATH  Google Scholar 

  24. D. Hilbert, Eigenschaften spezieller binärer Formen, insbesondere der Kugelfunktionen Drck Leupold (1885), p. 30

    Google Scholar 

  25. E. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Cambridge Universtiy Press, Cambridge, 1931)

    MATH  Google Scholar 

  26. F. Klein, Über Lamé’sche Functionen. Math. Ann. 18, 237–246 (1881)

    Article  MathSciNet  Google Scholar 

  27. G. Lamé, Mémoire sur l’équilibre des températures dans un ellipsoïde à trois axes inégaux. J. Math. Pure Appl. 4, 126–163 (1839)

    Google Scholar 

  28. P.S. Laplace, Théorie des Attractions des Sphéroïdes et de la Figure des Planètes, vol. III (Mechanique Celeste, Paris, 1785)

    Google Scholar 

  29. R. Lávička, Canonical bases for \(sl(2,\mathbb {C})\)-modules of spherical monogenics in dimension 3, Arch. Math. (Brno) 46(5), 339–349 (2010)

    Google Scholar 

  30. R. Lávička, Complete orthogonal appell systems for spherical monogenics. Complex Anal. Oper. Theory 6(2), 477–489 (2012)

    Article  MathSciNet  Google Scholar 

  31. N. Lebedev, Special Functions and their Applications (Dover, New York, 1972), Chaps. 7, 8

    Google Scholar 

  32. H. Leutwiler, Quaternionic analysis in \(\mathbb {R}^3\) versus its hyperbolic modification, in Proceedings of the NATO Advanced Research Workshop held in Prague, October 30–November 3, 2000, ed. by F. Brackx, J.S.R. Chisholm, V. Soucek, vol. 25 (Kluwer Academic Publishers, Dordrecht, 2001)

    Google Scholar 

  33. F. Lindemann, Entwicklung der Functionen einer complexen Variabeln nach Lamé’shen Functionen und nach Zugeordneten der Kugelfunctionen. Math. Ann. 19, 323–386 (1882)

    Article  Google Scholar 

  34. J. Liouville, Sur diverses questions d’analyse et de Physique mathématique concernant L’ellipsoïde. J. Math. Pures Appl. 11, 217–236 (1846)

    Google Scholar 

  35. J. Morais, Approximation by homogeneous polynomial solutions of the Riesz system in \(\mathbb {R}^3\), Ph.D. thesis, Bauhaus-Universität Weimar (2009)

    Google Scholar 

  36. J. Morais, A complete orthogonal system of spheroidal monogenics. J. Numer. Anal. Ind. Appl. Math. 6(3–4), 105–119 (2011)

    MathSciNet  MATH  Google Scholar 

  37. J. Morais, An orthogonal system of monogenic polynomials over prolate spheroids in \(\mathbb {R}^3\). Math. Comput. Model. 57, 425–434 (2013)

    Google Scholar 

  38. J. Morais, A quaternionic version of a standard theory related to spheroidal functions, Habilitation thesis. Preprint (2019)

    Google Scholar 

  39. J. Morais, K. Gürlebeck, Real-part estimates for solutions of the Riesz system in \(\mathbb {R}^3\). Complex Var. Elliptic Equ. 57(5), 505–522 (2012)

    Google Scholar 

  40. J. Morais, K. Gürlebeck, Bloch’s theorem in the context of quaternion analysis. Comput. Methods Funct. Theory 12(2), 541–558 (2012)

    Article  MathSciNet  Google Scholar 

  41. J. Morais, H.T. Le, Orthogonal appell systems of monogenic functions in the cylinder. Math. Methods Appl. Sci. 34(12), 1472–1486 (2011)

    Article  MathSciNet  Google Scholar 

  42. J. Morais, K. Avetisyan, K. Gürlebeck, On Riesz systems of harmonic conjugates in \(\mathbb {R}^3\). Math. Methods Appl. Sci. 36(12), 1598–1614 (2013)

    Google Scholar 

  43. J. Morais, K.I. Kou, W. Sprössig, Generalized holomorphic Szegö kernel in 3D spheroids. Comput. Math. Appl. 65, 576–588 (2013)

    Article  MathSciNet  Google Scholar 

  44. J. Morais, M.H. Nguyen, K.I. Kou, On 3D orthogonal prolate spheroidal monogenics. Math. Methods Appl. Sci. 39(4), 635–648 (2016)

    Article  MathSciNet  Google Scholar 

  45. C. Müller, Spherical Harmonics. Lectures Notes in Mathematics, vol. 17 (Springer, Berlin, 1966)

    Google Scholar 

  46. H.M. Nguyen, K. Gürlebeck, J. Morais, S. Bock, On orthogonal monogenics in oblate spheroidal domains and recurrence formulae. Integral Transforms Spec. Funct. 25(7), 513–527 (2014)

    Article  MathSciNet  Google Scholar 

  47. C. Niven, On the conduction of heat in ellipsoids of revolution. Philos. Trans. R. Soc. Lond. 171, 117 (1880)

    Article  Google Scholar 

  48. G. Sansone. Orthogonal Functions. Pure and Applied Mathematics, vol. IX (Interscience Publishers, New York, 1959)

    Google Scholar 

  49. T.J. Stieltjes, Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé. Acta Math. 6, 321–326 (1885)

    Article  MathSciNet  Google Scholar 

  50. G. Szegö, A problem concerning orthogonal polynomials. Trans. Am. Math. Soc. 37, 196–206 (1935)

    Article  MathSciNet  Google Scholar 

  51. W. Thomson, P.G. Tait Oxford, Treatise on Natural Philosophy (Clarendon Press, Oxford, 1867)

    MATH  Google Scholar 

  52. E.T. Whittaker, G.N. Watson, A Course in Modern Analysis (Cambridge University Press, Cambridge, 1927)

    MATH  Google Scholar 

Download references

Acknowledgement

The author’s work is supported by the Asociación Mexicana de Cultura, A. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaõ Morais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morais, J. (2019). Comments on an Orthogonal Family of Monogenic Functions on Spheroidal Domains. In: Bernstein, S. (eds) Topics in Clifford Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23854-4_12

Download citation

Publish with us

Policies and ethics