Skip to main content
Log in

Bloch’s Theorem in the Context of Quaternion Analysis

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

The classical Theorem of Bloch (1924) asserts that if f is a holomorphic function on a region that contains the closed unit disk ¦z¦ ≤ 1 such that \(f(0)=0\ {\rm and}\mid f'(0)\mid=1\), then the image domain contains discs of radius

$${3\over 2}-{\sqrt 2}>{1\over 12}$$

The optimal value is known as Bloch’s constant and 1/12 is not the best possible. In this paper we give a direct generalization of Bloch’s Theorem to the three-dimensional Euclidean space in the framework of quaternion analysis. We compute explicitly a lower bound for the Bloch constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), 359–364.

    MathSciNet  Google Scholar 

  2. L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.

    MATH  Google Scholar 

  3. A. Bloch, Les theoremes de M. Valiron sur les fonctions entieres et la theorie de l’uniformisation, Ann. Fac. Sci. Univ. Toulouse III 17, (1925).

  4. I. Cação, Constructive approximation by monogenic polynomials, Ph.D. thesis, Universidade de Aveiro, Departamento de Matemática, 2004.

  5. I. Cação I, K. Gürlebeck and S. Bock, Complete orthonormal systems of spherical monogenics − a constructive approach; in: L. H. Son et al. (eds.), Methods of Complex and Clifford Analysis, SAS International Publications, Delhi (2005), 241–260.

    Google Scholar 

  6. I. Cação I, K. Gürlebeck and S. Bock, On derivatives of spherical monogenics, Complex Var. 51 (2006), 847–869.

    Article  Google Scholar 

  7. I. Cação and H. Malonek, Remarks on some properties of monogenic polynomials; in: T. E. Simos, G. Psihoyios, Ch. Tsitouras (eds.), Special Volume of Wiley-VCH, ICNAAM (2006), 596–599.

  8. C. Carathéodory. Über die Winkelderivierten von beschränkten analytischen Funktionen, Sitz.-Ber. Preuss. Akad. Phys.-Math. 4 (1929), 1–18.

    Google Scholar 

  9. —, Conformal Representation, 2d ed., Cambridge University Press, 1952.

  10. H. Chen and P. M. Gauthier, Bloch constants in several variables, Trans. Amer. Math. Soc. 353 no.4 (2001), 1371–1386.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Delanghe, On homogeneous polynomial solutions of the Riesz system and their harmonic potentials, Complex Var. Elliptic Eq. 52 (2007), 1047–1062.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Eremenko, Bloch radius, normal families and quasiregular mappings, Proc. Amer. Math. Soc. 128 no.2 (2000), 557–560

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Estermann, Notes on Landau’s proof of Picard’s “Great” Theorem; in: L. Mirsky (ed.), Sudies in Pure Mathematics Presented to R. Rado, Acad. Press London, New York, 1971, 101–106.

    Google Scholar 

  14. K. Gürlebeck and W. Sprössig, Quaternionic Analysis and Elliptic Boundary Value Problems, Akademie Verlag, Berlin, 1989.

    MATH  Google Scholar 

  15. K. Gürlebeck and W. Sprössig, Quaternionic Calculus for Engineers and Physicists, John Wiley and Sons, Chichester, 1997.

    MATH  Google Scholar 

  16. K. Gürlebeck and H. Malonek, A hypercomplex derivative of monogenic functions in ℝn+1 and its applications, Complex Var. Elliptic Equ. 39 no.3 (1999), 199–228.

    Article  MATH  Google Scholar 

  17. K. Gürlebeck and J. Morais, Bohr’s Theorem for monogenic functions, AIP Conference Proceedings 936 (2007), 750–753.

    Article  Google Scholar 

  18. —, On Bohr’s phenomenon in the context of quaternionic analysis and related problems; in: Le Hung Son, W. Tutschke (eds.) Algebraic structures in partial differential equations related to complex and Clifford analysis, Ho Chi Minh City University of Education Press (2010), 9–24

  19. K. Gürlebeck and J. Morais, Bohr type theorems for monogenic power series, Comput. Methods Funct. Theory 9 no.2 (2011), 633–651.

    Article  Google Scholar 

  20. —, On orthonormal polynomial solutions of the Riesz system in ℝ3, Recent Advances in Computational and Applied Mathematics (2011), 143–158, doi: 10.1007/978-90-481-9981-56.

  21. M. Heins, Selected Topics in the Classical Theory of Functions of a Complex Variable, Holt, Rinehart and Winston, New York, 1962.

    MATH  Google Scholar 

  22. V. Kravchenko, Applied Quaternionic Analysis. Research and Exposition in Mathematics, Heldermann Verlag, Lemgo, 28,2003.

    Google Scholar 

  23. V. Kravchenko and M. Shapiro, Integral Representations for Spatial Models of Mathematical Physics, Research Notes in Mathematics, Pitman Advanced Publishing Program, London, 1996.

    MATH  Google Scholar 

  24. E. Landau, Der Picard-Schottkysche Satz und die Blochsche Konstante, Sitz.-Ber. Preuss. Akad. Phys.-Math. (1926).

  25. E. Landau and G. Valiron, A deduction from Schwarz’s Lemma, London Math. Soc. 4.3 (1929), 162–163.

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Mitelman and M. Shapiro, Differentiation of the Martinelli-Bochner integrals and the notion of hyperderivability, Math. Nachr. 172 no.1 (1995), 211–238.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Minda and G. Schober, Another elementary approach to the theorems of Landau, Montel, Picard and Schottky, Complex Var. Theory Appl. 2 (1983), 157–164.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Morais, Approximation by homogeneous polynomial solutions of the Riesz system in ℝ3, Ph.D. diss., Bauhaus-Universität Weimar, 2009.

  29. J. Morais and K. Gürlebeck, Real-part estimates for solutions of the Riesz system in ℝ3, Complex Var. Elliptic Equ. (2011), 18 pp, doi: 10.1080/17476933.2010.504838.

  30. H. Leutwiler, Quaternionic analysis in ℝ3 versus its hyperbolic modification; in: F. Brackx, J. S. R. Chisholm and V. Soucek (eds.), Clifford Analysis and its Applications, Proceedings of the NATO advanced research workshop, Prague, Czech Republic, October 30 November 3, 2000; Dordrecht: Kluwer Academic Publishers. NATO Sci. Ser. II, Math. Phys. Chem. 25 (2001), 193–211.

  31. G. Lohöfer, Inequalities for the associated Legendre functions, J. Approx. Theory 95 (1998), 178–193.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Pick, Über eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche, Math. Ann. 77 (1916), 1–6.

    Google Scholar 

  33. Ch. Pommerenke, Über die Faberschen Polynome schlichter Funktionen, Math. Z. 85 (1964), 197–208.

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Rajala, A lower bound for the Bloch radius of K-quasiregular mappings, Proc. Amer. Math. Soc. 132 no.9 (2004), 2593–2601.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Remmert, Classical Topics in Complex Function Theory, Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  36. M. Riesz, Clifford Numbers and Spinors, Inst. Phys. Sci. Techn. Lect. Ser. 38, Maryland, 1958.

  37. D. Rochon, A Bloch constant for hyperholomorphic functions, Complex Var. Theory Appl. 44 no.2 (2001), 85–101.

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Sansone, Orthogonal Functions, Pure and Applied Mathematics, Vol. IX, Interscience Publishers, New York, 1959.

    MATH  Google Scholar 

  39. H. A. Schwarz, Gesammelte mathematische Abhandlungen II, Springer-Verlag, Berlin, 1890.

    Book  Google Scholar 

  40. M. Shapiro and N. L. Vasilevski, Quaternionic ψ-hyperholomorphic functions, singular operators and boundary value problems I, Complex Var. Theory Appl. 27 (1995), 17–46.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Shapiro and N. L. Vasilevski, Quaternionic ψ-hyperholomorphic functions, singular operators and boundary value problems II, Complex Var. Theory Appl. 27 (1995), 67–96.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Phil. Soc. 85 (1979), 199–225.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem größten Gliede der zugehörigen Taylorschen Reihe, Acta Math. 37 (1914), 305–326.

    Article  MathSciNet  Google Scholar 

  44. H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Pedro Morais.

Additional information

The first author’s research is supported by Foundation for Science and Technology (FCT) via the post-doctoral grant SFRH/BPD/66342/2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morais, J.P., Gürlebeck, K. Bloch’s Theorem in the Context of Quaternion Analysis. Comput. Methods Funct. Theory 12, 541–558 (2012). https://doi.org/10.1007/BF03321843

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321843

Keywords

2000 MSC

Navigation