Skip to main content

Embryogenesis of Marsupial Frogs (Hemiphractidae), and the Changes that Accompany Terrestrial Development in Frogs

  • Chapter
  • First Online:
Evo-Devo: Non-model Species in Cell and Developmental Biology

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 68))

Abstract

The developmental adaptations of the marsupial frogs Gastrotheca riobambae and Flectonotus pygmaeus (Hemiphractidae) are described and compared with frogs belonging to seven additional families. Incubation of embryos by the mother in marsupial frogs is associated with changes in the anatomy and physiology of the female, modifications of oogenesis, and extraordinary changes in embryonic development. The comparison of early development reveals that gene expression is highly conserved. However, the timing of gene expression varies between frog species. There are two modes of gastrulation according to the onset of convergent extension. In gastrulation mode 1, convergent extension is an intrinsic mechanism of gastrulation. This gastrulation mode occurs in frogs with aquatic reproduction, such as Xenopus laevis. In gastrulation mode 2, convergent extension occurs after the completion of gastrulation movements. Gastrulation mode 2 occurs in frogs with terrestrial reproduction, such as the marsupial frog, G. riobambae. The two modes of frog gastrulation resemble the two transitions toward meroblastic cleavage of ray-finned fishes (Actinopterygii). The comparison indicates that a major event in the evolution of frog terrestrial development is the separation of convergent extension from gastrulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonin B, Ho M, Gustin JK, Meloty-Kapella C, Domingo CR (2006) Cell behaviors associated with somite segmentation and rotation in Xenopus laevis. Dev Dyn 235:3268–3279

    Article  CAS  PubMed  Google Scholar 

  • Alcocer I, Santacruz X, Steinbeisser H, Thierauch K-H, del Pino EM (1992) Ureotelism as the prevailing mode of nitrogen excretion in larvae of the marsupial frog Gastrotheca riobambae (Fowler) (Anura, Hylidae). Comp Biochem Physiol 101A:229–231

    Article  CAS  Google Scholar 

  • Arendt D, Nübler-Jung K (1999) Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs. Mech Dev 81:3–22

    Article  CAS  PubMed  Google Scholar 

  • Beckham YM, Nath K, Elinson RP (2003) Localization of RNAs in oocytes of Eleutherodactylus coqui, a direct developing frog, differs from Xenopus laevis. Evol Dev 5:562–571

    Article  CAS  PubMed  Google Scholar 

  • Benítez M-S, del Pino EM (2002) Expression of Brachyury during development of the dendrobatid frog Colostethus machalilla. Dev Dyn 225:592–596

    Article  PubMed  CAS  Google Scholar 

  • Bilinski SM, Kloc M, Tworzydlo W (2017) Selection of mitochondria in female germline cells: is Balbiani body implicated in this process? J Assist Reprod Genet 34:1405–1412

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum M, Schweickert A, Vick P, Wright CVE, Danilchik MV (2014) Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol 393:109–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolker JA (1994) Comparison of gastrulation in frogs and fish. Am Zool 34:313–322

    Article  Google Scholar 

  • Bruce AEE (2016) Zebrafish epiboly: spreading thin over the yolk. Dev Dyn 245:244–258

    Article  CAS  PubMed  Google Scholar 

  • Buchholz DR, Singamsetty S, Karadge U, Williamson S, Langer CE, Elinson RP (2007) Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg. Dev Dyn 236:1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Callery EM (2006) There’s more than one frog in the pond: a survey of the Amphibia and their contributions to developmental biology. Semin Cell Dev Biol 17:80–92

    Article  PubMed  Google Scholar 

  • Callery EM, Elinson RP (1996) Developmental regulation of the urea-cycle enzyme arginase in the direct developing frog Eleutherodactylus coqui. J Exp Zool 275:61–66

    Article  CAS  PubMed  Google Scholar 

  • Callery EM, Elinson RP (2000) Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc Natl Acad Sci USA 97:2615–2620

    Article  CAS  PubMed  Google Scholar 

  • Castroviejo-Fisher S, Padial JM, De la Riva I, Pombal JP Jr, Da Silva HR, Rojas-Runjaic FJM, Medina-Méndez E, Frost DR (2015) Phylogenetic systematics of egg-brooding frogs (Anura: Hemiphractidae) and the evolution of direct development. Zootaxa 4004:1–75

    Article  PubMed  Google Scholar 

  • Chatterjee S, Elinson RP (2013) Commitment to nutritional endoderm in Eleutherodactylus coqui involves altered nodal signaling and global transcriptional repression. J Exp Zool Mol Dev Evol 322:27–44

    Article  CAS  Google Scholar 

  • Chipman AD, Haas A, Khaner O (1999) Variations in anuran embryogenesis: yolk-rich embryos of Hyperolius puncticulatus (Hyperoliidae). Evol Dev 1:49–61

    Article  CAS  PubMed  Google Scholar 

  • Coggins LW (1973) An ultrastructural and radioautographic study of early oogenesis in the toad Xenopus laevis. J Cell Sci 12:71–93

    CAS  PubMed  Google Scholar 

  • Collazo A, Keller R (2010) Early development of Ensatina eschscholtzii: an amphibian with a large, yolky egg. EvoDevo 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper MS, Virta VC (2007) Evolution of gastrulation in the ray-finned (Actinopterygian) fishes. J Exp Zool Mol Dev Evol 308:591–608

    Article  Google Scholar 

  • Cox RT, Spradling AC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–1590

    Article  CAS  PubMed  Google Scholar 

  • de Albuja CM, Campos M, del Pino EM (1983) Role of progesterone on oocyte maturation in the egg-brooding hylid frog Gastrotheca riobambae (Fowler). J Exp Zool 227:271–276

    Article  PubMed  Google Scholar 

  • De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7:296–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • del Pino EM (1973) Interactions between gametes and environment in the toad Xenopus laevis (Daudin) and their relationship to fertilization. J Exp Zool 185:121–132

    Article  Google Scholar 

  • del Pino EM (1980) Morphology of the pouch and incubatory integument in marsupial frogs (Hylidae). Copeia 1980:10–17

    Article  Google Scholar 

  • del Pino EM (1983) Progesterone induces incubatory changes in the brooding pouch of the frog Gastrotheca riobambae (Fowler). J Exp Zool 227:159–163

    Article  PubMed  Google Scholar 

  • del Pino EM (1989) Modifications of oogenesis and development in marsupial frogs. Development 107:169–187

    PubMed  Google Scholar 

  • del Pino EM (1996) The expression of Brachyury (T) during gastrulation in the marsupial frog Gastrotheca riobambae. Dev Biol 177:64–72

    Article  PubMed  Google Scholar 

  • del Pino EM (2018) The extraordinary biology and development of marsupial frogs (Hemiphractidae) in comparison with fish, mammals, birds, amphibians and other animals. Mech Dev 154:2–11

    Article  PubMed  CAS  Google Scholar 

  • del Pino EM, Elinson RP (1983) A novel development pattern for frogs: gastrulation produces an embryonic disk. Nature 306:589–591

    Article  Google Scholar 

  • del Pino EM, Escobar B (1981) Embryonic stages of Gastrotheca riobambae (Fowler) during maternal incubation and comparison of development with that of other egg-brooding hylid frogs. J Morphol 167:277–295

    Article  PubMed  Google Scholar 

  • del Pino E, Humphries AA (1978) Multiple nuclei during early oogenesis in Flectonotus pygmaeus and other marsupial frogs. Biol Bull 154:198–212

    Article  Google Scholar 

  • del Pino EM, Loor-Vela S (1990) The pattern of early cleavage of the marsupial frog Gastrotheca riobambae. Development 110:781–789

    PubMed  Google Scholar 

  • del Pino EM, Medina A (1998) Neural development in the marsupial frog Gastrotheca riobambae. Int J Dev Biol 42:723–731

    PubMed  Google Scholar 

  • del Pino EM, Sánchez G (1977) Ovarian structure of the marsupial frog Gastrotheca riobambae (Fowler). J Morphol 153:153–162

    Article  PubMed  Google Scholar 

  • del Pino EM, Galarza ML, de Albuja CM, Humphries AA (1975) The maternal pouch and development in the marsupial frog Gastrotheca riobambae (Fowler). Biol Bull 149:480–491

    Article  Google Scholar 

  • del Pino EM, Steinbeisser H, Hofmann A, Dreyer C, Campos M, Trendelenburg MF (1986) Oogenesis in the egg-brooding frog Gastrotheca riobambae produces large oocytes with fewer nucleoli and low RNA content in comparison to Xenopus laevis. Differentiation 32:24–33

    Article  Google Scholar 

  • del Pino EM, Murphy C, Masson PH, Gall JG (1992) 5S rRNA-encoding genes of the marsupial frog Gastrotheca riobambae. Gene 111:235–238

    Article  PubMed  Google Scholar 

  • del Pino EM, Alcocer I, Grunz H (1994) Urea is necessary for the culture of embryos of the marsupial frog Gastrotheca riobambae, and is tolerated by embryos of the aquatic frog Xenopus laevis. Develop Growth Differ 36:73–80

    Article  Google Scholar 

  • del Pino EM, Sáenz FE, Pérez OD, Brown FD, Ávila M-E, Barragán VA, Haddad N, Paulin-Levasseur M, Krohne G (2002) Lamina-associated polypeptide 2 (LAP2) expression in fish and amphibians. Int J Dev Biol 46:227–234

    Google Scholar 

  • del Pino EM, Avila M-E, Pérez OD, Benítez M-S, Alarcón I, Noboa V, Moya IM (2004) Development of the dendrobatid frog Colostethus machalilla. Int J Dev Biol 48:663–670

    Article  PubMed  Google Scholar 

  • del Pino EM, Venegas-Ferrín M, Romero-Carvajal A, Montenegro-Larrea P, Sáenz-Ponce N, Moya IM, Alarcón I, Sudou N, Yamamoto S, Taira M (2007) A comparative analysis of frog early development. Proc Natl Acad Sci USA 104:11882–11888

    Article  PubMed  CAS  Google Scholar 

  • Duellman WE (2015) Marsupial frogs: Gastrotheca and allied genera. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw Hill, New York

    Google Scholar 

  • Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP (1987) Fertilization and aqueous development of the Puerto Rican terrestrial-breeding frog, Eleutherodactylus coqui. J Morphol 193:217–224

    Article  PubMed  Google Scholar 

  • Elinson RP (2001) Direct development: an alternative way to make a frog. Genesis 29:91–95

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP (2009) Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods. J Exp Zool Mol Dev Evol 312:526–532

    Article  Google Scholar 

  • Elinson RP (2013) Metamorphosis in a frog that does not have a tadpole. Curr Top Dev Biol 103:259–276

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP, Beckham Y (2002) Development in frogs with large eggs and the origin of amniotes. Zoology 105:105–117

    Article  PubMed  Google Scholar 

  • Elinson RP, del Pino EM (1985) Cleavage and gastrulation in the egg-brooding, marsupial frog, Gastrotheca riobambae. J Embryol Exp Morphol 90:223–232

    CAS  PubMed  Google Scholar 

  • Elinson RP, del Pino EM (2012) Developmental diversity of amphibians. WIREs Dev Biol 1:345–369

    Article  CAS  Google Scholar 

  • Elinson RP, Fang H (1998) Secondary coverage of the yolk by the body wall in the direct developing frog, Eleutherodactylus coqui: an unusual process for amphibian embryos. Dev Genes Evol 208:457–466

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP, del Pino EM, Townsend DS, Cuesta FC, Eichhorn P (1990) A practical guide to the developmental biology of terrestrial-breeding frogs. Biol Bull 179:163–177

    Article  CAS  PubMed  Google Scholar 

  • Ewald AJ, Peyrot SM, Tyszka JM, Fraser SE, Wallingford JB (2004) Regional requirements for Dishevelled signaling during Xenopus gastrulation: separable effects on blastopore closure, mesendoderm internalization and archenteron formation. Development 131:6195–6209

    Article  CAS  PubMed  Google Scholar 

  • Frost DR (2018) Amphibian species of the world: an online reference. Version 6 (04 June, 2018). Electronic database. American Museum of Natural History, New York. http://research.amnh.org/herpetology/amphibia/index.html

  • Gatherer D, del Pino EM (1992) Somitogenesis in the marsupial frog Gastrotheca riobambae. Int J Dev Biol 36:283–291

    CAS  PubMed  Google Scholar 

  • Gentsch GE, Monteiro RS, Smith JC (2017) Cooperation between T-Box factors regulates the continuous segregation of germ layers during vertebrate embryogenesis. Curr Top Dev Biol 122:117–159

    Article  CAS  PubMed  Google Scholar 

  • Green J (2009) The animal cap assay. Methods Mol Biol 127:1–13

    Google Scholar 

  • Gurdon JB (1987) Embryonic induction—molecular prospects. Development 99:285–306

    CAS  PubMed  Google Scholar 

  • Haddad C, Prado C (2005) Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. Bioscience 55:207–217

    Article  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13:611–667

    Article  CAS  PubMed  Google Scholar 

  • Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausen P, Riebesell M (1991) The early development of Xenopus laevis. Springer, Berlin

    Google Scholar 

  • Hedrick JL (2008) Anuran and pig egg zona pellucida glycoproteins in fertilization and early development. Int J Dev Biol 52:683–701

    Article  CAS  PubMed  Google Scholar 

  • Heinicke MP, Lemmon AR, Lemmon EM, McGrath K, Hedges SB (2018) Phylogenomic support for evolutionary relationships of New World direct-developing frogs (Anura: Terraranae). Mol Phylogenet Evol 118:145–155

    Article  CAS  PubMed  Google Scholar 

  • Hervas F, Torres KP, Montenegro-Larrea P, del Pino EM (2015) Development and gastrulation in Hyloxalus vertebralis and Dendrobates auratus (Anura: Dendrobatidae). Amph Reptil Conserv 8:121–135 (e90)

    Google Scholar 

  • Hervas-Sotomayor F, del Pino EM (2013) Desarrollo neural, somitogénesis y morfología interna de los embriones de Hyloxalus vertebralis y Dendrobates auratus (Anura: Dendrobatidae). Rev Ecuat Med Cienc Biol 34:99–112

    Google Scholar 

  • Holtfreter J (1933) Nachweis der Induktionsfähigkeit abgetöteter Keimteile: Isolations– und Transplantationsversuche. Wilhelm Roux Arch Entwickl Mech Org 128:584–633

    Article  PubMed  Google Scholar 

  • Jones EA, Woodland HR (1989) Spatial aspects of neural induction in Xenopus laevis. Development 107:785–791

    CAS  PubMed  Google Scholar 

  • Jones RE, Gerrard AM, Roth JJ (1973) Estrogen and brood pouch formation in the marsupial frog Gastrotheca riobambae. J Exp Zool 184:177–184

    Article  CAS  PubMed  Google Scholar 

  • Karadge U, Elinson RP (2013) Characterization of the nutritional endoderm in the direct developing frog Eleutherodactylus coqui. Dev Genes Evol 223:351–362

    Article  CAS  PubMed  Google Scholar 

  • Karavanov AA, Saint-Jeannet J-P, Karavanova I, Taira M, Dawid IB (1996) The LlM homeodomain protein Lim-1 is widely expressed in neural, neural crest and mesoderm derivatives in vertebrate development. Int J Dev Biol 40:453–461

    CAS  PubMed  Google Scholar 

  • Keller R, Danilchik M (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103:193–209

    CAS  PubMed  Google Scholar 

  • Keller R, Winklbauer R (1992) Cellular basis of amphibian gastrulation. Curr Top Dev Biol 27:39–89

    Article  CAS  PubMed  Google Scholar 

  • Keller RE, Danilchik M, Gimlich R, Shih J (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J Embryol Exp Morphol 89:185–209

    PubMed  Google Scholar 

  • Kloc M, Etkin LD (1995) Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121:287–297

    CAS  PubMed  Google Scholar 

  • Kloc M, Bilinski S, Etkin LD (2004) The Balbiani body and germ cell determinants: 150 years later. Curr Top Dev Biol 59:1–36

    Article  CAS  PubMed  Google Scholar 

  • Kodjabachian L, Karavanov AA, Hikasa H, Hukriede NA, Aoki T, Taira M, Dawid IB (2001) A study of Xlim1 function in the Spemann-Mangold organizer. Int J Dev Biol 45:209–218

    CAS  PubMed  Google Scholar 

  • Lei L, Spradling AC (2016) Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science 352:95–99

    Article  CAS  PubMed  Google Scholar 

  • Macgregor HC, del Pino EM (1982) Ribosomal gene amplification in multinucleate oocytes of the egg brooding hylid frog Flectonotus pygmaeus. Chromosoma 85:475–488

    Article  CAS  PubMed  Google Scholar 

  • Macgregor HC, Kezer J (1970) Gene amplification in oocytes with 8 germinal vesicles from the tailed frog Ascaphus truei Stejneger. Chromosoma 29:189–206

    Article  CAS  PubMed  Google Scholar 

  • Mangold O (1933) Über die Induktionsfähigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21:761–766

    Article  Google Scholar 

  • Matova N, Cooley L (2001) Comparative aspects of animal oogenesis. Dev Biol 231:291–320

    Article  CAS  PubMed  Google Scholar 

  • Montenegro-Larrea P, del Pino EM (2011) La gastrulación de Epipedobates anthonyi (Anura: Dendrobatidae). Rev Ecuat Med C Biol 32:24–32

    Google Scholar 

  • Moya IM, Alarcón I, del Pino EM (2007) Gastrulation of Gastrotheca riobambae in comparison with other frogs. Dev Biol 304:467–478

    Article  CAS  PubMed  Google Scholar 

  • Nath K, Elinson RP (2007) RNA of AmVegT, the axolotl orthologue of the Xenopus meso-endodermal determinant, is not localized in the oocyte. GEP 7:197–201

    CAS  PubMed  Google Scholar 

  • Nath K, Boorech JL, Beckham YM, Burns MM, Elinson RP (2005) Status of RNAs, localized in Xenopus laevis oocytes, in the frogs Rana pipiens and Eleutherodactylus coqui. J Exp Zool Mol Dev Evol 304B:28–39

    Article  CAS  Google Scholar 

  • Nelsen OE (1953) Comparative embryology of the vertebrates. McGraw Hill, New York

    Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop PD (1955) Independent and dependent development in the formation of the central nervous system in amphibians; a review of experimental analysis. Exp Cell Res 3:262–273

    Google Scholar 

  • Nieuwkoop PD (1969) The formation of the mesoderm in urodelean amphibians. I. Induction by the endoderm. Wilhelm Roux Arch Entwickl Mech Org 162:341–373

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Garland Publishing, New York

    Google Scholar 

  • Nina L, del Pino EM (1977) Estructura histológica del ovario del sapo Eleutherodactylus unistrigatus y observaciones sobre el desarrollo embrionario. Rev Univ Catolica Ecuador 5:31–41

    Google Scholar 

  • Ninomiya H, Zhang Q, Elinson RP (2001) Mesoderm formation in Eleutherodactylus coqui: body patterning in a frog with a large egg. Dev Biol 236:109–123

    Article  CAS  PubMed  Google Scholar 

  • Noble GK (1927) The value of life history data in the study of the evolution of the Amphibia. Ann N Y Acad Sci 30:31–128

    Article  Google Scholar 

  • Ogielska M, Kotusz A, Augustyńska R, Ihnatowicz J, Paśko L (2013) A stockpile of ova in the grass frog Rana temporaria is established once for the life span. Do ovaries in amphibians and in mammals follow the same evolutionary strategy? Anat Rec 296:638–653

    Article  Google Scholar 

  • Pepling ME, de Cuevas M, Spradling AC (1999) Germline cysts: a conserved phase of germ cell development? Trends Cell Biol 9:257–262

    Article  CAS  PubMed  Google Scholar 

  • Pérez O, Benítez M-S, Nath K, Heasman J, del Pino EM, Elinson RP (2007) Comparative analysis of Xenopus VegT, the meso-endodermal determinant, identifies an unusual conserved sequence. Differentiation 75:559–565

    Article  PubMed  CAS  Google Scholar 

  • Radice GP, Neff AW, Shim YH, Brustis J-J, Malacinski GM (1989) Developmental histories in amphibian myogenesis. Int J Dev Biol 33:325–343

    CAS  PubMed  Google Scholar 

  • Romero-Carvajal A, Sáenz-Ponce N, Venegas-Ferrín M, Almeida-Reinoso D, Lee C, Bond J, Ryan MJ, Wallingford JB, del Pino EM (2009) Embryogenesis and laboratory maintenance of the foam-nesting túngara frogs, genus Engystomops (= Physalaemus). Dev Dyn 238:1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roszko I, Sawada A, Solnica-Krezel L (2009) Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20:986–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sáenz-Ponce N, Mitgutsch C, del Pino EM (2012a) Variation in the schedules of somite and neural development in frogs. Proc Natl Acad Sci USA 109:20503–20507

    Article  PubMed  Google Scholar 

  • Sáenz-Ponce N, Santillana Ortiz JD, del Pino EM (2012b) The gastrocoel roof plate in embryos of different frogs. Differentiation 83:S62–S66

    Article  PubMed  CAS  Google Scholar 

  • Salazar-Nicholls MJ, del Pino EM (2015) Early development of the glass frogs Hyalinobatrachium fleischmanni and Espadarana callistomma (Anura: Centrolenidae) from cleavage to tadpole hatching. Amphib Reptil Conserv 8:89–106 (e88)

    Google Scholar 

  • Saxén L (1989) Neural induction. Int J Dev Biol 33:21–48

    PubMed  Google Scholar 

  • Scharf SR, Rowning B, Wu M, Gerhart JC (1989) Hyperdorsoanterior embryos from Xenopus eggs treated with D2O. Dev Biol 134:175–188

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Steinlein C, Bogart JP, Feichtinger W, Haaf T, Nanda I, del Pino EM, Duellman WE, Hedges SB (2012) The Hemiphractid frogs phylogeny, embryology, life history, and cytogenetics. Cytogenet Genome Res 138:69–384

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Steinlein C, Haaf T, Feichtinger W, Guttenbach M, Bogart JP, Gruber SL, Kasahara S, Kakampuy W, del Pino EM, Carrillo A-B, Romero-Carvajal A, Mahony M, King M, Duellman WE, Hedges SB (2018) The Arboranan frogs: evolution, biology, cytogenetics. Cytogenet Genome Res 155(1–4):1–326

    Google Scholar 

  • Shi D, Delarue M, Darribere T, Riou J-F (1987) Experimental analysis of the extension of the dorsal marginal zone in Pleurodeles waltl gastrulae. Development 100:147–161

    CAS  PubMed  Google Scholar 

  • Shindo A (2017) Models of convergent extension during morphogenesis. WIREs Dev Biol 7:e293

    Article  Google Scholar 

  • Shook DR, Kasprowicz EM, Davidson LA, Keller R (2018) Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. Elife 7:e26944

    Article  PubMed  PubMed Central  Google Scholar 

  • Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–R228

    Article  CAS  PubMed  Google Scholar 

  • Solnica-Krezel L, Sepich DS (2012) Gastrulation: making and shaping germ layers. Annu Rev Cell Dev Biol 28:687–717

    Article  CAS  PubMed  Google Scholar 

  • Spannhof I, Spannhof L (1972) Beobachtungen zur Brutbiologie und Larvenentwicklung von Gastrotheca marsupiata. Wiss Zeit Univ Rostock Math Naturwiss Reihe 20:97–104

    Google Scholar 

  • Spemann H, Mangold H (1924) Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch Mikroskop Anat Entwicklungsmech 100:599–638

    Article  Google Scholar 

  • Sudarwati S, Nieuwkoop PD (1971) Mesoderm formation in the anuran Xenopus laevis (Daudin). Wilhelm Roux Arch Entwickl Mech Org 166:189–204

    Article  PubMed  Google Scholar 

  • Sudou N, Garcés-Vásconez A, López-Latorre MA, Taira M, del Pino EM (2016) Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs. Proc Nat Acad Sci USA 113:5628–5633

    Article  CAS  PubMed  Google Scholar 

  • Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6:356–366

    Article  CAS  PubMed  Google Scholar 

  • Taira M, Otani H, Jamrich M, Dawid IB (1994) Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. Development 120:1525–1536

    CAS  PubMed  Google Scholar 

  • Takeuchi M, Takahashi M, Okabe M, Aizawa S (2009) Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 332:90–102

    Article  CAS  PubMed  Google Scholar 

  • Townsend DS, Stewart MM (1985) Direct development in Eleutherodactylus coqui (Anura: Leptodactylidae): a staging table. Copeia 1985:423–436

    Article  Google Scholar 

  • Townsend DS, Stewart MM, Harvey Pough F, Brussard PF (1981) Internal fertilization in an oviparous frog. Science 212:469–471

    Article  CAS  PubMed  Google Scholar 

  • Ulmer B, Tingler M, Kurz S, Maerker M, Andre P, Mönch D, Campione M, Deißler K, Lewandoski M, Thumberger T, Schweickert A, Fainsod A, Steinbeißer H, Blum M (2017) A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci Rep 7:43010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas A, del Pino EM (2017) Analysis of cell size in the gastrula of ten frog species reveals a correlation of egg with cell sizes, and a conserved pattern of small cells in the marginal zone. J Exp Zool Mol Dev Evol 328B:88–96

    Article  Google Scholar 

  • Vargas-Salinas F, Torres OL (2013) Agalychnis spurrelli (Boulenger 1913) Rana arbórea planeadora. Catálogo Anfibios Reptil Colomb 1:19–25

    Google Scholar 

  • Venegas-Ferrín M, Sudou N, Taira M, del Pino EM (2010) Comparison of Lim1 expression in embryos of frogs with different modes of reproduction. Int J Dev Biol 54:195–202

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JB, Fraser SE, Harland RM (2002) Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev Cell 2:695–706

    Article  CAS  PubMed  Google Scholar 

  • Warkman AS, Krieg PA (2007) Xenopus as a model system for vertebrate heart development. Semin Cell Dev Biol 18:46–53

    Article  CAS  PubMed  Google Scholar 

  • Warne RW, Catenazzi A (2016) Pouch brooding marsupial frogs transfer nutrients to developing embryos. Biol Lett 12:20160673

    Article  PubMed  PubMed Central  Google Scholar 

  • Wassersug RJ, Duellman WE (1984) Oral structures and their development in egg-brooding hylid frog embryos and larvae: evolutionary and ecological implications. J Morphol 182:1–37

    Article  PubMed  Google Scholar 

  • Wiens JJ, Kuczynski CA, Duellman WE, Reeder TW (2007) Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead? Evolution (N Y) 61:1886–1899

    CAS  Google Scholar 

  • Winning RS, Sargent TD (1994) Pagliaccio, a member of the Eph family of receptor tyrosine kinase genes, has localized expression in a subset of neural crest and neural tissues in Xenopus laevis embryos. Mech Dev 46:219–229

    Article  CAS  PubMed  Google Scholar 

  • Ziermann JM, Diogo R (2014) Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development. J Morphol 275:398–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I acknowledge with gratitude the collaboration of former students and colleagues. I thank the late Michael Schmid for revision of the text and Jennifer Davis and Clifford Keil for language revision and valuable comments. The Pontificia Universidad Católica del Ecuador supported research in my laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia M. del Pino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Pino, E.M. (2019). Embryogenesis of Marsupial Frogs (Hemiphractidae), and the Changes that Accompany Terrestrial Development in Frogs. In: Tworzydlo, W., Bilinski, S. (eds) Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-23459-1_16

Download citation

Publish with us

Policies and ethics