Skip to main content

Ecohydrology of Arid and Semiarid Ecosystems: An Introduction

  • Chapter
  • First Online:
Dryland Ecohydrology

Abstract

Ecohydrology has been defined as “the science, which seeks to describe the hydrologic mechanisms that underlie ecologic patterns and processes” (Rodriguez-Iturbe 2000, p. 1). This type of inquiry is fundamental to the understanding of the coupling existing between ecosystem dynamics and the water cycle, in particular in arid and semiarid environments, where water is an important limiting resource not only for its scarcity but also for its intermittency and unpredictable presence (Porporato and Rodriguez-Iturbe 2002; Rodriguez-Iturbe and Porporato 2005). The biogeoscience community has recently been trying to establish stronger connections between research in the physical and the natural sciences to provide a process-based understanding of the interactions existing between the hydrosphere and the biosphere. Thus, the research area at the confluence between hydrology and ecology has received considerable attention. The term “ecohydrology,” itself, has become increasingly popular in the scientific literature. Initially used to denote an integrated study of ecological and hydrological processes in wetlands (Ingram 1987; Zalewski et al. 1997), this designation was later extended to all terrestrial ecosystems (Vertessy et al. 1996; Baird and Wilby 1999; Rodriguez-Iturbe 2000) and to the interaction between freshwater and ecosystem services (Gordon and Folke 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Melillo JM (1991) Terrestrial ecosystems. Saunders College Publishing, Philadelphia, PA

    Google Scholar 

  • Adamoli J, Sennhauser E, Acero JM, Rescia A (1990) Stress and disturbance – vegetation dynamics in the dry Chaco region of Argentina. J Biogeogr 17:491–500

    Article  Google Scholar 

  • Adams ME (1996) Savanna environments. In: Adams WM, Goudie AS, Orme AR (eds) The physical geography of Africa. Oxford Univ. Press, Oxford, pp 196–210

    Google Scholar 

  • Adler RF et al (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res 113:D22104. https://doi.org/10.1029/2008JD010536

    Article  Google Scholar 

  • American Meteorological Society (1997) Meteorological drought-policy statement. Bull Am Meteorol Soc 78:847–849

    Article  Google Scholar 

  • Andela N, Liu YY, Van Dijk AIJM, De Jeu RAM, McVicar TR (2013) Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10:6657–6676

    Article  Google Scholar 

  • Anderies JM, Janssen MA, Walker BH (2002) Grazing management, resilience, and the dynamics of a fire-driven rangeland system. Ecosystems 5:23–44

    Article  Google Scholar 

  • Archer S (1989) Have southern Texas savannas been converted to woodlands in recent history? Am Nat 134:545–561

    Article  Google Scholar 

  • Archer S, Schimel DS, Holland EA (1995) Mechanisms of shrubland expansion: land use, climate or CO2. Clim Chang 29:91–99

    Article  Google Scholar 

  • Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265:164–177

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234

    Article  Google Scholar 

  • Baird AJ, Wilby RL (eds) (1999) Eco-hydrology: plants and water in terrestrial and aquatic environments. Routledge, London

    Google Scholar 

  • Bastin J-F et al (2018) The extent of forest in dryland biomes. Science 356:635–638

    Article  CAS  Google Scholar 

  • Beckage B, Platt WJ, Gross LJ (2009) Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. Am Nat 174:805–818

    Article  PubMed  Google Scholar 

  • Berg A, Sheffield J (2018) Climate change and drought: the soil moisture perspective. Curr Clim Chang Rep 4:180–191

    Article  Google Scholar 

  • Bestelmeyer BT, Tugel AJ, Peacock GL, Robinett DG, Sbaver PL, Brown JR, Herrick JE, Sanchez H, Havstad KM (2009) State-and-transition models for heterogeneous landscapes: a strategy for development and application. Rangel Ecol Manag 62:1–15

    Article  Google Scholar 

  • Bhattachan A, Tatlhego M, Dintwe K, Caylor KK, O’Donnell FC, Okin GS, Perrot DO, Ringrose S, D’Odorico P (2012) Evaluating ecohydrological theories of woody root distribution in the Kalahari. PLoS One 7(3):e33996. https://doi.org/10.1371/journal.pone.0033996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–537. https://doi.org/10.1111/j.1469-8137.2004.01252.x

    Article  CAS  PubMed  Google Scholar 

  • Brady NC, Weil RR (1996) The nature and properties of soils, 11th edn. Prentice Hall, Harlow

    Google Scholar 

  • Breshears DD, Barnes FJ (1999) Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: a unified conceptual model. Landsc Ecol 14:465–478

    Article  Google Scholar 

  • Brown JH, Valone TJ, Curtin CG (1997) Reorganization of an arid ecosystem in response to recent climate change. Proc Natl Acad Sci 94:9729–9733

    Article  CAS  PubMed  Google Scholar 

  • Budyko MI (1958) The heat balance of the Earth’s surface. U.S. Dept. of Commerce, Washington, D.C., p 259

    Google Scholar 

  • Budyko MI (1974) Climate and life. Academic Press, Orlando, FL

    Google Scholar 

  • Buffington LC, Herbel CH (1965) Vegetational changes on a semidesert grassland range from 1858 to 1963. Ecol Monogr 35:139–164

    Article  Google Scholar 

  • Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the 21st century with the Hadley Centre climate model. J Hydrometeorol 7:1113–1125

    Article  Google Scholar 

  • Burrows WH, Carter JO, Scanlan JC, Anderson ER (1990) Management of savannas for livestock production in north-east Australia – contrasts across the tree grass continuum. J Biogeogr 17:503–512

    Article  Google Scholar 

  • Cook BI, Smerdon JE, Seager R, Coats S (2014) Global warming and 21st century drying. Clim Dyn. https://doi.org/10.1007/s00382-014-2075-y

    Article  Google Scholar 

  • Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American Southerwest and central plains. Sci Adv 1:e1400082

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Antonio CM, Tunison JT, Loh RK (2000) Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii. Austral Ecol 25(5):507–522

    Article  Google Scholar 

  • D’Odorico P, Bhattachan A (2012) Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Philos Trans R Soc Lond B Biol Sci 367:3145–3157. https://doi.org/10.1098/rstb.2012.0016

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Odorico P, Ridolfi L, Porporato A, Rodriguez-Iturbe I (2000) Preferential states of seasonal soil moisture: the impact of climate fluctuations. Water Resour Res 36(8):2209–2219

    Article  Google Scholar 

  • D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344

    Article  Google Scholar 

  • D’Odorico P, Davis KF, Rosa L, Carr JA, Chiarelli D, Dell’Angelo J, Gephart JA, MacDonald GK, Seekell DA, Suweis S, Rulli MC (2018) The global food-energy-water nexus. Rev Geophys 56. https://doi.org/10.1029/2017RG000591

    Article  Google Scholar 

  • D’Odorico P, Fuentes JD, Pockman WT, Collins SL, He Y, Medeiros JA, De Wekker SFJ, Litvak ME (2010a) Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere 1:17

    Google Scholar 

  • D’Odorico P, Laio F, Porporato A, Ridolfi L, Rinaldo A, Iturbe IR (2010b) Ecohydrology of terrestrial ecosystems. Bioscience 60(11):898–907

    Article  Google Scholar 

  • D’Odorico P, Laio F, Ridolfi L (2006) A probabilistic analysis of fire-induced tree-grass coexistence in savannas. Am Nat 167:E79–E87

    Article  PubMed  Google Scholar 

  • D’Odorico P, Laio F, Porporato A, Ridolfi L, Barbier N (2007) Noise-induced vegetation patterns in fire-prone savannas. J Geophys Res-Biogeosci 112:G02021. https://doi.org/10.1029/2006JG000261

  • D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5):520–530

    Article  Google Scholar 

  • Dai AI, Fung Y, Del Genio AD (1997) Surface observed global land precipitation variations during 1900–88. J Clim 10:2943–2962

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer drought severity index for 1870-2002: relationship with soil moisture and effects on surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • De Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115:692–702

    Article  Google Scholar 

  • Dodd MB, Lauenroth WK (1997) The influence of soil texture on the soil water dynamics and vegetation structure of a shortgrass steppe ecosystem. Plant Ecol 133:13–28

    Article  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) CO2 fertilisation has increased maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40:3031–3035

    Article  CAS  Google Scholar 

  • Dracup JA, Lee KS, Paulson EG Jr (1980) On the statistical characteristics of drought events. Water Resour Res 16:289–296

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol and Evol 14:135–139. https://doi.org/10.1016/S0169-5347(98)01554-7

    Article  CAS  Google Scholar 

  • du Toit J, Biggs HC, Rogers KH (2003) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington, DC

    Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG (2011) Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14:709–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global drylands in a warming world, Atmos. Chem Phys 13:10081–10094

    CAS  Google Scholar 

  • Feng X, Porporato A, Rodriguez-Iturbe I (2013) Changing rainfall seasonality in the tropics. Nat Clim Chang 3:811–815. https://doi.org/10.1038/nclimate1907

    Article  Google Scholar 

  • Felker P, Clark PR, Nash P, Osborn JF, Cannell GH (1982) Screening prosopis (mesquite) for cold tolerance. For Sci 28:556–562

    Google Scholar 

  • Fensholt R et al (2012) Greenness in semi-arid areas across the globe 1981–2007: an earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158

    Article  Google Scholar 

  • Franklin KA, Lyons K, Nagler PL, Lampkin D, Glenn EP, Molina-Freaner F, Markow T, Huete AR (2006) Buffelgrass (Pennisetum ciliare) land conversion and productivity in the plains of Sonora, Mexico. Biol Conserv 127:62–71. https://doi.org/10.1016/j.biocon.2005.07.018

    Article  Google Scholar 

  • Fu Q, Feng S (2014) Responses of terrestrial aridity to global warming. J Geophys Res Atmos 119:7863–7875. https://doi.org/10.1002/2014JD021608

    Article  Google Scholar 

  • Gaughan AE, Stevens FR, Gibbes C, Southworth J, Winford MW (2012) Linking vegetation response to seasonal precipitation in the Okavango–Kwando–Zambezi catchment of southern Africa. Int J Remote Sens 33:6783–6804

    Article  Google Scholar 

  • Gillette DA, Pitchford AM (2004) Sand flux in the northern Chihuahuan desert, New Mexico, USA, and the influence of mesquite-dominated landscapes. J Geophys Res-Earth Surf 109:F04003

    Article  Google Scholar 

  • Gordon L, Folke C (2000) Ecohydrological landscape management for human well-being. Water Int 25:178–184

    Article  Google Scholar 

  • Grigulis K, Lavorel S, Davies ID, Dossantos A, Lloret F, Vilà M (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Glob Chang Biol 11:1042–1053. https://doi.org/10.1111/j.1365-2486.2005.00980.x

    Article  Google Scholar 

  • Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83(8):1149–1165

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. https://doi.org/10.1175/JCLI3990.1

    Article  Google Scholar 

  • He YF, D’Odorico P, De Wekker SFJ, Fuentes JD, Litvak M (2010) On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. J Geophys Res-Atmos 115:D21120

    Article  Google Scholar 

  • Hickler T, Eklundh L, Seaquist JW, Smith B, Ardö J, Olsson L, Sykes MT, Sjostrom M (2005) Precipitation controls Sahel greening trend. Geophys Res Lett 32. https://doi.org/10.1029/2005GL024370

  • Higgins SI, Bond WJ, Trollope WSW (2000) Fire, resprouting and variability: a recipe for tree-grass coexistence in savanna. J Ecol 88:213–229

    Article  Google Scholar 

  • Hipondoka MHT, Aranibar JN, Chirara C, Lihavha M, Macko SA (2003) Vertical distribution of grass and tree roots in arid ecosystems of southern Africa: niche differentiation or competition? J Arid Environ 54:319–325

    Article  Google Scholar 

  • Holdo RM (2013) Revisiting the two-layer hypothesis: coexistence of alternative functional rooting strategies in savannas. PLoS One 8:e69625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huenneke LF, Anderson JP, Remmenga M, Schlesinger WH (2002) Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Glob Chang Biol 8:247–264

    Article  Google Scholar 

  • Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005) Ecohydrological implications of woody plant encroachment. Ecology 86:308–319

    Article  Google Scholar 

  • Idso SB (1992) Shrubland expansion in the American southwest. Clim Chang 22:85–86

    Article  Google Scholar 

  • Ingram HAP (1987) Ecohydrology of Scottish peatlands. Trans R Soc Edinb Earth Environ Sci 78:287–296

    Article  Google Scholar 

  • Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N (1996) Tree spacing and coexistence in semiarid savannas. J Ecol 84:583–595

    Article  Google Scholar 

  • Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N, Moloney KA (1998) Modelling the impact of small-scale heterogeneities on tree–grass coexistence in semi-arid savannas. J Ecol 86:780–793

    Article  Google Scholar 

  • Johnson RW, Tothill JC (1985) Definitions and broad geographic outline of savanna lands. In: Tothill JC, Mott JG (eds) Ecology and Management of the World’s Savannas. Commonwealth Agricultural Bureau, Canberra

    Google Scholar 

  • Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys 50:RG3002. https://doi.org/10.1029/2011RG000366

    Article  Google Scholar 

  • Kauffman JB, Cummings DL et al (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. J Ecol 82(3):519–531

    Article  Google Scholar 

  • Keeley JE, Rundel PW (2005) Fire and the Miocene expansion of C4 grasslands. Ecol Lett 8:683–690. https://doi.org/10.1111/j.1461-0248.2005.00767.x

    Article  Google Scholar 

  • Kerley GIH, Whitford WG (2009) Can kangaroo rat graminivory contribute to the persistence of desertified shrublands? J Arid Environ 73:651–657

    Article  Google Scholar 

  • Knoop WT, Walker BH (1985) Interactions of woody and herbaceous vegetation in a southern African savanna. J Ecol 73:235–253

    Article  Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, Berlin

    Book  Google Scholar 

  • Lebarbe L, Lebel T (1997) Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990. J Hydrol 189(43–73):1–15

    Google Scholar 

  • Lettau H (1969) Evapotranspiration Climatonomy: 1. A new probabilistic approach to numerical prediction of monthly evapotranspiration, runoff, and soil moisture storage. Mon Weather Rev 97:691–699

    Article  Google Scholar 

  • Li J, Okin GS, Hartman LJ, Epstein HE (2007) Quantitative assessment of wind erosion and soil nutrient loss in desert grasslands of southern New Mexico, USA. Biogeochemistry 85:317–332

    Article  Google Scholar 

  • Li J, Okin GS, Alvarez LJ, Epstein HE (2008) Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry 88:73–88

    Article  CAS  Google Scholar 

  • Liepert BG, Previdi M (2009) Do models and observations disagree on the rainfall response to global warming? J Clim 22(11):3156–3166. https://doi.org/10.1175/2008JCLI2472.1

    Article  Google Scholar 

  • Mainguet M (1994) Desertification: natural background and human mismanagement. Springer, Berlin

    Book  Google Scholar 

  • Mata-Gonzalez R, Figueroa-Sandoval B, Clemente F, Manzano M (2007) Vegetation changes after livestock grazing exclusion and shrub control in the southern Chihuahuan Desert. West North Am Nat 67:63–70

    Article  Google Scholar 

  • Meanut, J-C, and I.R. Noble (1988). A functional classification of savanna plants. In B.H. Walker and J-C Meanut (Eds.) Responses of Savannas to Stress and Disturbance: Research Procedure and Experimental Design for Savanna Ecology and Management, pp. 8-11, International Union of Biological Sciences. Report 2., Paris

    Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33(3):491–505

    Article  Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2003). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Working Paper 55. Tyndall Centre for Climate Change Research, Norwich

    Google Scholar 

  • Moleele NM, Ringrose S, Matheson W, Vanderpost C (2002) More woody plants? The status of bush encroachment in Botswana’s grazing areas. J Environ Manag 64:3–11

    Article  CAS  Google Scholar 

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci U S A 98:5446–5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott JJ (1972) Germination studies on some annual species from an arid region of Western Australia. J Ecol 60:293–304

    Article  Google Scholar 

  • Nicholson SE (1980) The nature of rainfall fluctuations in subtropical west Africa. Mon Weather Rev 108:473–487

    Article  Google Scholar 

  • Nicholson SE (2011) Dryland climatology. Cambridge University Press, New York

    Book  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Nuttle W (2002) Eco-hydrology’s past and future. Eos 83(19):205–212

    Article  Google Scholar 

  • Okin GS, D’Odorico P, Archer SR (2009a) Impacts of feedbacks on Chihuahuan Desert grasslands: transience and metastability driven by grass recruitment. J Geophys Res 114:G01004

    Article  Google Scholar 

  • Okin GS, Parsons AJ, Wainwright J, Herrick JE, Bestelmeyer BT, Peters DPC, Fredrickson EL (2009b) Do changes in connectivity explain desertification? Bioscience 59:237–244

    Article  Google Scholar 

  • Olsson AD, Betancourt J, McClaran MP, Marsh SE (2012) Sonoran desert ecosystem transformation by a C4 grass without the grass/fire cycle. Divers Distrib 18:10–21. https://doi.org/10.1111/j.1472-4642.2011.00825.x

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought, US Weather Bureau Research Paper 45, 85 p

    Google Scholar 

  • Parsons AJ, Abrahams AD, Wainwright J (1996) Responses of interrill runoff and erosion rates to vegetation change in southern Arizona. Geomorphology 14:311–317

    Article  Google Scholar 

  • Peake DCI, Henzell EF, Stirk GB, Peake A (1979) Simulation of changes in herbage biomass and drought response of a buffel grass (Cenchrus ciliaris cv. biloela) in southern Queensland. Agro-Ecosystems 5:23–40. https://doi.org/10.1016/0304-3746(79)90024-6

    Article  Google Scholar 

  • Polley HW (1997) Implications of rising atmospheric carbon dioxide concentration for rangelands. J Range Manag 50:562–577

    Article  Google Scholar 

  • Polley HW, Johnson HB, Mayeux HS (1992) Carbon dioxide and water fluxes of C-3 annuals and C-3 and C-4 perennials at subambient Co-2 concentrations. Funct Ecol 6:693–703

    Article  Google Scholar 

  • Porporato A, Rodriguez-Iturbe I (2002) Ecohydrology – a challenging multidisciplinary research perspective. Hydrol Sci J 47(5):811–821

    Article  Google Scholar 

  • Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. III. Vegetation water stress. Adv Water Resour 24:725–744

    Article  Google Scholar 

  • Porporato A, Laio F, Ridolfi L, Caylor KK, Rodriguez-Iturbe I (2003) Soil moisture and plant stress dynamics along the Kalahari precipitation gradient. J Geophys Res 108(D3):4127. https://doi.org/10.1029/2002JD002448

    Article  Google Scholar 

  • Ramanathan V et al (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124. https://doi.org/10.1126/science.1064034

    Article  CAS  PubMed  Google Scholar 

  • Rango A, Huenneke L, Buonopane M, Herrick JE, Havstad KM (2005) Using historic data to assess effectiveness of shrub removal in southern New Mexico. J Arid Environ 62:75–91

    Article  Google Scholar 

  • Ravi S, D’Odorico P, Collins SL, Huxman TE (2009) Can biological invasions induce desertification? New Phytol 181:512–515

    Article  PubMed  Google Scholar 

  • Ridolfi L, D’Odorico P, Porporato A, Rodriguez-Iturbe I (2000) Duration and frequency of water stress in vegetation: an analytical model. Water Resour Res 36(8):2297–2307

    Article  Google Scholar 

  • Rodriguez-Iturbe I (2000) Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics. Water Resour Res 36(1):3–9

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Porporato A (2005) Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rodriguez-Iturbe I, D’Odorico P, Porporato A, Ridolfi L (1999) Tree-grass coexistence in savannas: the role of spatial dynamics and climate fluctuations. Geophys Res Lett 26(2):247–250

    Article  Google Scholar 

  • Rosa L, Rulli MC, Davis KF, Chiarelli D, Passera C, D’Odorico P (2018a) Closing the yield gap while ensuring water sustainability. Environ Res Lett 13:104002

    Article  CAS  Google Scholar 

  • Rosa L, Davis KF, Rulli MC, D’Odorico P (2018b) The water-energy nexus of hydraulic fracturing: a global hydrologic analysis for shale oil and gas extraction. Earth’s Future 6. https://doi.org/10.1002/2018EF000809

    Article  Google Scholar 

  • Runyan CW, D’Odorico P, Lawrence DL (2012) Physical and biological feedbacks on deforestation. Rev Geophys 50:RG4006. https://doi.org/10.1029/2012RG000394

  • Safriel U et al (2005) Dryland systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, The millennium ecosystem assessment series, vol 1. Island Press, Washington DC, pp 623–662. Available at https://www.millenniumassessment.org/documents/document.291.aspx.pdf

    Google Scholar 

  • Saha MV, Scanlon TM, D’Odorico P (2015) Examining the linkage between shrub encroachment and recent greening in water-limited southern Africa. Ecosphere 6(9):156. https://doi.org/10.1890/ES15-00098.1

    Article  Google Scholar 

  • Sala OE, Golluscio RA, Lauenroth WK, Soriano A (1989) Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81:501–505

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Lauenroth WK, Golluscio RA (1997) Plant functional types in temperate semi-arid regions. In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types, International Geosphere-Biosphere Programme Book Series, vol 1. Cambridge University Press, Cambridge, pp 217–233

    Google Scholar 

  • Sankaran M, Ratnam J, Hanan NP (2004) Tree-grass coexistence in savannas revisited: insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490

    Article  Google Scholar 

  • Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  Google Scholar 

  • Schlesinger WH, Abrahams AD, Parsons AJ, Wainwright J (1999) Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico: I. rainfall simulation experiments. Biogeochemistry 45:21–34

    Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunnigham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1044

    Article  CAS  PubMed  Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544

    Article  Google Scholar 

  • Scholes RJ, Walker BH (1993) An African savanna. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Scholes MC, Scholes RJ, Otter LB, Woghiren AJ (2003) Biogeochemistry: the cycling of elements. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience. Island Press, Washington, pp 130–148

    Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220

    Article  PubMed  Google Scholar 

  • Sekhwela MBM, Yates DJ (2007) A phenological study of dominant acacia tree species in areas with different rainfall regimes in the Kalahari of Botswana. J Arid Environ 70:1–17

    Article  Google Scholar 

  • Seager R, Mingfang T, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP, Harnik N, Leetmaa A, Lau LC, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  CAS  Google Scholar 

  • Sherwood S, Fu Q (2014) A drier future? Science 343:737–739

    Article  CAS  PubMed  Google Scholar 

  • Slaymaker O, Spencer T (1998) Physical geography and global environmental change. Addison Wesley Longman, New York

    Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–81. https://doi.org/10.1038/35040544

    Article  CAS  PubMed  Google Scholar 

  • Sorte CJ, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270. https://doi.org/10.1111/ele.12017

    Article  PubMed  Google Scholar 

  • Thomas DSG, Twyman C (2004) Good or bad rangeland? Hybrid knowledge science and local understandings of vegetation dynamics in the Kalahari. Land Degrad Dev 15:215–231

    Article  Google Scholar 

  • Thomas DSG, Knight M, Wiggs GFS (2005) Remobilization of the southern African desert dune systems by twenty-first century global warming. Nature 435:1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Thorntwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Tilman D, Haddi A (1992) Drought and biodiversity in grasslands. Oecologia 89:257–264. https://doi.org/10.1007/BF00317226

    Article  CAS  PubMed  Google Scholar 

  • UNEP (1992) World atlas of desertification. Edward Arnold, London

    Google Scholar 

  • Van Auken OW (2000) Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst 31:197–215

    Article  Google Scholar 

  • Van de Koppel J, Rietkerk M, van Langevelde F, Kumar L, Klausmeier CA, Fryxell JM, Hearne JW, van Andel J, de Ridder N, Skidmore A, Stroosnijder L, Prins HHT (2002) Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Am Nat 159:209–218

    Article  Google Scholar 

  • Van Vegten JA (1983) Thornbush invasion in a savanna ecosystem in eastern Botswana. Vegetatio 56:3–7

    Article  Google Scholar 

  • Van Wilgen BW, Govender N, Biggs HC, Ntsala D, Funda XN (2004) Response of Savanna fire regimes to changing fire-management policies in a large African National Park. Conserv Biol 18:1533–1540

    Article  Google Scholar 

  • Venter FJ, Scholes RJ, Eckhardt HC (2003) The abiotic template and its associated vegetation pattern. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience. Island Press, Washington, pp 81–129

    Google Scholar 

  • Vertessy RA, Hatton TJ, Benyon RG, Dawes WR (1996) Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration. Tree Physiol 16:221–232

    Article  PubMed  Google Scholar 

  • Wainwright J, Parsons AJ, Abrahams AD (2000) Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico. Hydrol Process 14:2921–2943

    Article  Google Scholar 

  • Walter H (1971) Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Wang L, D’Odorico P, Ries L, Caylor K, Macko S (2009) Combined effect of soil moisture and nitrogen availability variations on grass productivity in African Savannas. Plant Soil 328(1–2):95–108. https://doi.org/10.1007/s11104-009-0085-z

    Article  CAS  Google Scholar 

  • Ward D, Wiegand K, Getzin S (2013) Walter’s two-layer hypothesis revisited: back to the roots! Oecologia 172:617–630

    Article  PubMed  Google Scholar 

  • Weltzin JF, McPherson GR (1997) Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA. Oecologia 112:156–164

    Article  PubMed  Google Scholar 

  • Westoby M, Walker B, Noy-Meir I (1989) Opportunistic management of rangelands not at equilibrium. J Range Manag 42:266–274

    Article  Google Scholar 

  • Wetherald RT, Manabe S (2002) Simulation of hydrologic changes associated with global warming. J Geophys Res 107:4379. https://doi.org/10.1029/2001JD001195

    Article  Google Scholar 

  • Whitford WG, Martinez-Turanzas G, Martinez-Meza E (1995) Persistence of desertified ecosystems: explanations and implications. Environ Monit Assess 37:319–322

    Article  CAS  PubMed  Google Scholar 

  • Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336

    Article  Google Scholar 

  • Yevjevich V (1967) An objective approach to definitions and investigations of continental hydrologic drought. Hydrology Paper 23, Colorado State University, Fort Collins, CO, 18 p

    Google Scholar 

  • Yu K, D’Odorico P (2015) Hydraulic lift as a determinant of tree-grass coexistence in savannas. New Phytol 207(4):1038–1051. https://doi.org/10.1111/nph.13431

    Article  PubMed  Google Scholar 

  • Yu K, Okin GS, Ravi S, D’Odorico P (2016) Potential of grass invasions in desert shrublands to create novel ecosystem states under variable climate. Ecohydrology 9(8):1496–1506

    Article  Google Scholar 

  • Zalewski M, Janauer GA, Jolankai G (1997) Ecohydrology: a new paradigm for sustainable management of aquatic resources. UNESCO International Hydrological Programme. UNESCO IHP Technical Document in Hydrology No. 7

    Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on 20th-century precipitation trends. Nature 448:461–466

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Reeves JB, Blank B (2005) The impact of recent increases in atmospheric CO2 on biomass production and vegetative retention of Cheatgrass (Bromus tectorum): implications for fire disturbance. Glob Chang Biol 11:1325–1332. https://doi.org/10.1111/j.1365-2486.2005.00992.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo D’Odorico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Odorico, P., Porporato, A., Runyan, C. (2019). Ecohydrology of Arid and Semiarid Ecosystems: An Introduction. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_1

Download citation

Publish with us

Policies and ethics