Skip to main content

Heat Shock Protein 60 (HSP60): Role in Skeletal Muscle Diseases and Novel Prospects for Therapy

  • Chapter
  • First Online:
Heat Shock Protein 60 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 18))

  • 334 Accesses

Abstract

Eukaryotic Hsp60 is also known as mitochondrial chaperones (Chaperonin, Cpn60) as earlier it was considered to be present in mitochondria only. Last few years it has become clear that it is also present in cytosol, cell surface, extracellular space and in the peripheral blood. Hsp60 plays a vital role in quality control of proteins. It interacts with Hsp10 (resides in mitochondria, also named as Cpn10) to prepare native conformational protein from nascent polypeptides in the presence of ATP. Some other newly identified functions of Hsp60 include cell survival and proliferation. Hsp60 has significant role in various skeletal muscle wasting diseases like sarcopenia, cancer cachexia, sepsis, denervation, burns, and chronic obstructive pulmonary disease. The present chapter describes a brief representative research efforts aimed to establish the role of Hsp60 in various skeletal muscle wasting conditions with the purpose to illustrate possible protective and therapeutic implications for developing novel approach to rectify them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HSBP1:

Heat shock protein binding factor 1

HSEs:

Heat shock elements

HSF1:

Heat shock factor transcription factor

HSP:

Heat shock family

Hsp:

Heat shock proteins

Hsp60:

Heat shock protein60

IGF1:

Insulin growth factor-1

LMF:

Lipid mobilising factor

MAPK:

Mitogen-activated protein kinase

mTOR:

Mammalian target of rapamycin

TLRs:

Toll like receptors

UPS:

Unfolded protein response

References

  • Agrawal A, Rathor R, Suryakumar G (2017) Oxidative protein modification alters proteostasis under acute hypobaric hypoxia in skeletal muscles: a comprehensive in vivo study. Cell Stress Chaperones 22(3):429–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal A, Rathor R, Kumar R, Suryakumar G, Ganju L (2018) Role of altered proteostasis network in chronic hypobaric hypoxia induced skeletal muscle atrophy. PLoS One 13(9):e0204283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen KJ (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 5:S18–S25

    Article  CAS  Google Scholar 

  • Argilés JM, Busquets S, García-Martínez C, López-Soriano FJ (2005) Mediators involved in the cancer anorexia-cachexia syndrome: past, present, and future. Nutrition 21:977–985

    Article  PubMed  CAS  Google Scholar 

  • Atre N, Thomas L, Mistry R, Pathak K, Chiplunkar S (2006) Role of nitric oxide in heat shock protein induced apoptosis of gamma delta T cells. Int J Cancer 119:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295:865–868

    Article  CAS  PubMed  Google Scholar 

  • Bach JR, O’Brien J, Krotenberg R, Alba AS (1987) Management of end stage respiratory failure in Duchenne muscular dystrophy. Muscle Nerve 10:177–182

    Article  CAS  PubMed  Google Scholar 

  • Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Sig Transduct 2012:982794

    Google Scholar 

  • Barbieri E, Sestili P, Vallorani L, Guescini M, Calcabrini C, Gioacchini AM, Annibalini G, Lucertini F, Piccoli G, Stocchi V (2014) Mitohormesis in muscle cells: a morphological, molecular, and proteomic approach. Muscle Ligaments Tendons J 3(4):254–266

    Article  Google Scholar 

  • Barone R, Macalusa F, Sangiogi C, D’Amico D, Gammazza AM, Campanella C, Cappello F, Zummo G, Farina F (2016) Hsp60 and interleukins expression in the skeletal muscle and its implications in exercise and cachexia. Ital J Anat Embryol 121(1):26

    Google Scholar 

  • Beccafico S, Puglielli C, Pietrangelo T, Bellomo R, Fanò G, Fulle S (2007) Age-dependent effects on functional aspects in human satellite cells. Ann N Y Acad Sci 1100:345–352

    Article  CAS  PubMed  Google Scholar 

  • Bosaeus I, Daneryd P, Svanberg E, Lundholm K (2001) Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer 93:380–383

    Article  CAS  PubMed  Google Scholar 

  • Bosutti A, Toigo G, Ciocchi B, Situlin R, Guarnieri G, Biolo G (2002) Regulation of muscle cathepsin B proteolytic activity in protein-depleted patients with chronic diseases. Clin Nutr 21(5):373–378

    Article  CAS  PubMed  Google Scholar 

  • Brodsky JL, Chiosis G (2006) Hsp70 molecular chaperones: emerging roles in human disease and identification of small molecule modulators. Curr Top Med Chem 6:1215–1225

    Article  CAS  PubMed  Google Scholar 

  • Busquets S, García-Martínez C, Alvarez B, Carbó N, López-Soriano FJ, Argilés JM (2000) Calpain-3 gene expression is decreased during experimental cancer cachexia. Biochim Biophys Acta 1475(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival func- tions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury P, Suryakumar G, Prasad R, Singh SM, Ali S, Ilavazhagan G (2012) Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin–proteasome pathway and calpains. Mol Cell Biochem 364:101–113

    Article  CAS  Google Scholar 

  • Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219

    CAS  PubMed  Google Scholar 

  • Chen W, Wang J, Shao C, Liu S, Yu Y, Wang Q, Cao X (2006) Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells. Eur J Immunol 36:1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Chung L, Ng YC (2006) Age-related alternations in expression of apoptosis regulatory proteins and heat shock proteins in rat skeletal muscle. BBA-Mol Basis Dis 1762(1):103–109

    Article  CAS  Google Scholar 

  • Colotti C, Cavallini G, Vitale RL, Donati A, Maltinti M, Del Ry S, Bergamini E, Giannessi D (2005) Effects of aging and anti-aging caloric restrictions on carbonyl and heat shock protein levels and expression. Biogerontology 6:397–406

    Article  CAS  PubMed  Google Scholar 

  • Csermely P (1999) The “chaperone-percolator” model: a possible molecular mechanism of Anfinsen-cage type chaperone action. BioEssays 21:959–965

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Heat shock protein 10 and signal transduction: a “capsula eburnea” of carcinogenesis? Cell Stress Chaperones 11:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dargelos E, Brulé C, Combaret L, Hadj-Sassi A, Dulong S, Poussard S, Cottin P (2007) Involvement of the calcium-dependent proteolytic system in skeletal muscle aging. Exp Gerontol 42(11):1088–1098

    Article  CAS  PubMed  Google Scholar 

  • Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7:762–773

    Article  CAS  PubMed  Google Scholar 

  • DeJong CH, Busquets S, Moses AG, Schrauwen P, Ross JA, Argiles JM, Fearon KC (2005) Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia. Oncol Rep 14(1):257–263

    CAS  PubMed  Google Scholar 

  • Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11:116–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis ME, Leung EH, Sweeny EA, Jackrel ME, Cushman-Nick M, Neuhaus-Follini A, Vashist S, Sochor MA, Knight MN, Shorter J (2012) Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients. Cell 151:778–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery AE (1990) Dystrophin function. Lancet 335:1289

    Article  CAS  PubMed  Google Scholar 

  • Emery AE (1993) Duchenne muscular dystrophy–Meryon’s disease. Neuromuscul Disord 3:263–266

    Article  CAS  PubMed  Google Scholar 

  • Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD (2008) Cachexia: a new definition. Clin Nutr 27(6):793–799

    Article  CAS  PubMed  Google Scholar 

  • Fearon KC, Voss AC, Hustead DS, Cancer Cachexia Study Group (2006) Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am J Clin Nutr 83:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Febbraio MA, Koukoulas I (2000) HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol 89:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Zeng Y, Graner MW, Katsanis E (2002) Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood 100:4108–4115

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194. https://doi.org/10.1074/jbc.M705904200

    Article  CAS  PubMed  Google Scholar 

  • Graul AI, Stringer M, Sorbera LC (2016) Drugs Today 52(9):519

    Article  CAS  Google Scholar 

  • Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJ, Kunkel LM (2015) The pathogenesis and therapy of muscular dystrophies. Ann Rev Genom Hum Genet 16:281–308

    Article  CAS  Google Scholar 

  • Guiraud S, Edwards B, Squire SE, Babbs A, Shah N, Berg A, Chen H, Davies KE (2017) Identification of serum protein biomarkers for utrophin based DMD therapy. Sci Rep 7:43697

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Knowlton AA (2007) Hsp60 trafficking in adult cardiac myocytes: role of exosomal pathway. Am J Physiol Heart Circ Physiol 292:3052–3056

    Article  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci 57(12):M772–M777

    Article  PubMed  Google Scholar 

  • Itoh H, Komatsuda A, Ohtani H, Wakui H, Imai H, Sawada K, Otaka M, Ogura M, Suzuki A, Hamada F (2002) Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. Eur J Biochem 269:5931–5938

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Suryakumar G, Prasad R, Ganju L (2013) Differential activation of myocardial ER stress response: a possible role in hypoxic tolerance. Int J Cardiol 168(5):667–677

    Article  Google Scholar 

  • Jain K, Suryakumar G, Ganju L, Singh SB (2014) Differential hypoxic tolerance is mediated by activation of heat shock response and nitric oxide pathway. Cell Stress Chaperones 19(6):801–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph AM, Adhihwtty PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguyen LMD, Aranda JM, Sandesara BD, Pahor M, Manini TM, Marzetti E, Leeuwenburgh C (2012) The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell 11(5):801–809

    Article  CAS  PubMed  Google Scholar 

  • Kastle M, Grune T (2012) Interactions of the proteasomal system with chaperones: protein triage and protein quality control. Prog Mol Biol Transl Sci 109:113–160

    Article  PubMed  CAS  Google Scholar 

  • Khal J, Hine AV, Fearon KCH, Dejong CHC, Tisdale MJ (2005) Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem Cell Biol 37(10):2196–2206

    Article  CAS  PubMed  Google Scholar 

  • Khassaf M, Child RB, McArdle A, Brodie DA, Esanu C, Griffiths RD, Jackson MJ (2001) Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise. J Appl Physiol 90:1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Nueda A, Meng YH, Dynan WS, Mivechi NF (1997) Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J Cell Biochem 67:43–54

    Article  CAS  PubMed  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  • Kirchengast S, Huber J (2009) Gender and age differences in lean soft tissue mass and sarcopenia among healthy elderly. Anthropol Anz 67(2):139–151

    Article  PubMed  Google Scholar 

  • Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10:2782–2793

    Article  CAS  PubMed  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, Tosato M, Bernabei R, Onder G (2012) Sarcopenia and mortality among older nursing home residents. J Am Med Dir Assoc 13:121–126

    Article  PubMed  Google Scholar 

  • Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95(5):1851–1860

    Article  PubMed  Google Scholar 

  • Macario AJL, de Macario CE (2007) Molecular chaperones: multiple functions, pathologies and potential applications. Front Biosci 12:2588–2600

    Article  CAS  PubMed  Google Scholar 

  • MacDonald N, Easson AM, Mazurak VC, Dunn GP, Baracos VE (2003) Understanding and managing cancer cachexia. J Am Coll Surg 197(1):143–161

    Article  PubMed  Google Scholar 

  • Maglara AA, Vasilaki A, Jackson MJ, McArdle A (2003) Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. J Physiol 548:837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marber MS (1994) Stress proteins and myocardial protection. Clin Sci (Lond) 86:375–381

    Article  CAS  Google Scholar 

  • McArdle A, Pattwell D, Vasilaki A, Griffiths RD, Jackson MJ (2001) Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 280:C621–C627

    Article  CAS  PubMed  Google Scholar 

  • McMillan DC, Preston T, Fearon KCH, Burns HJG, Slater C, Shenkin A (1994) Protein synthesis in cancer patients with inflammatory response: investigations with [N]glycine. Nutrition 10(3):232–240

    CAS  PubMed  Google Scholar 

  • McMulen CA, Ferry AL, Gamboa JL, Andrade FH, Dupont-Versteegden EE (2009) Age-related changes of cell death pathways in rat extraocular muscle. Exp Gerontol 44:20–425

    Article  CAS  Google Scholar 

  • Mendell JR, Shilling C, Leslie ND, Flanigan KM, Al-Dahhak R, Gastier-Foster J, Kneile K, Dunn DM, Duval B, Aoyagi A, Hamil C, Mahmoud M, Roush K, Bird L, Rankin C, Lilly H, Street N, Chandrasekar R, Weiss RB (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71:304–313. 2012

    Article  CAS  PubMed  Google Scholar 

  • Mestril R, Dillmann WH (1995) Heat shock proteins and protection against myocardial ischemia. J Mol Cell Cardiol 27(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Morici G, Rappa F, Cappello F, Pace E, Pace A, Mudò G, Crescimanno G, Belluardo N, Bonsignore MR (2016) Lack of dystrophin affects bronchial epithelium in mdx mice. J Cell Physiol 231(10):2218–2223

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI, Jurivich DA, Kroger PE, Mathur SK, Murphy SP, Nakai A, Sarge AK, Abravaya K, Sistonen LT (1994) Regulation of heat shock gene transcription by a family of heat shock factors. In: Morimoto R, Tissières A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 417–455

    Google Scholar 

  • Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS (2001) Sarcopenia. J Lab Clin Med 137:231–24310

    Article  CAS  PubMed  Google Scholar 

  • Naylor DJ, Hartl FU (2001) Contribution of molecular chaperones to protein folding in the cytoplasm of prokaryotic and eukaryotic cells. Biochem Soc Symp 68:45–68

    Article  CAS  Google Scholar 

  • O'Gorman P, McMillan DC, McArdle CS (1999) Longitudinal study of weight, appetite, performance status, and inflammation in advanced gastrointestinal cancer. Nutr Can 35(2):127–129

    Article  CAS  Google Scholar 

  • Osterloh A, Meier Stiegen F, Veit A, Fleischer B, von Bonin A, Breloer M (2004) Lipopolysaccharide- free heat shock protein 60 activates T cells. J Biol Chem 279:47906–47911

    Article  CAS  PubMed  Google Scholar 

  • Pietrangelo T, Puglielli C, Mancinelli R, Beccafico S, Fanò G, Fulle S (2009) Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation. Exp Gerontol 44:523–531

    Article  CAS  PubMed  Google Scholar 

  • Piselli P, Vendetti S, Vismara D, Cicconi R, Poccia F, Colizzi V, Delpino A (2000) Different expression of CD44, ICAM-1 and HSP60 on primary tumor and metastases of a human pancreatic carcinoma growing in scid mice. Anticancer Res 20:825–831

    CAS  PubMed  Google Scholar 

  • Plumier JC, Currie RW (1996) Heat shock-induced myocardial protection against ischemic injury: a role for HSP70? Cell Stress Chaperones 1:13–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pockley AG, Fairburn B, Mirza S, Slack LK, Hopkinson K, Muthana M (2007) A non-receptor- mediated mechanism for internalization of molecular chaperones. Methods 43:238–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana FJ, Cohen IR (2011) The HSP60 immune system network. Trends Immunol 32:89–95

    Article  CAS  PubMed  Google Scholar 

  • Ranford JC, Henderson B (2002) Chaperonins in disease: mechanisms, models and treatments. Mol Pathol 55:209–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rantanen T (2003) Muscle strength, disability and mortality. (2003). Scand J Med Sci Sports 13(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Rathor R, Sharma P, Suryakumar G, Ganju L (2015) A pharmacological investigation of Hippophae salicifolia (HS) and Hippophae rhamnoides turkestanica (HRT) against multiple stress (C-H-R): an experimental study using rat model. Cell Stress Chaperones 20(5):821–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1(2):97–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzoli R, Reginster JY, Arnal JF, Bautmans I, Beaudart C, Bischoff-Ferrari H, Biver E, Boonen S, Brandi ML, Chines A, Cooper C, Epstein S, Fielding RA, Goodpaster B, Kanis JA, Kaufman JM, Laslop A, Malafarina V, Mañas LR, Mitlak BH, Oreffo RO, Petermans J, Reid K, Rolland Y, Sayer AA, Tsouderos Y, Visser M, Bruyère O (2013) Quality of life in sarcopenia and frailty. Calcif Tissue Int 93(2):101–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991S

    Article  CAS  PubMed  Google Scholar 

  • Santilli V, Bernetti A, Mangone M, Paoloni M (2014) Clinical definition of sarcopenia. Clin Cases Miner Bone Metab 11(3):177–180

    PubMed  PubMed Central  Google Scholar 

  • Satyal SH, Chen D, Fox SG, Kramer JM, Morimoto RI (1998) Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 12:1962–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamaei Tousi A, Steptoe A, O’Donnell K, Palmen J, Stephens JW, Hurel SJ, Marmot M, Homer K, D'Aiuto F, Coates AR, Humphries SE, Henderson B (2007) Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic and biological factors. Cell Stress Chaperones 12:384–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  CAS  PubMed  Google Scholar 

  • Sigal LH, Williams S, Soltys B, Gupta R (2001) H9724, a monoclonal antibody to Borreliaburg-dorferi’s flagellin, binds to heat shock protein 60 (HSP60) within live neuroblastoma cells: a potential role for HSP60 in peptide hormone signaling and in an autoimmune pathogenesis of the neuropathy of Lyme disease. Cell Mol Neurobiol 21:477–495

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320

    Article  CAS  PubMed  Google Scholar 

  • Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2(11):862–871

    Article  CAS  PubMed  Google Scholar 

  • Tisdale MJ (2010) Cancer cachexia. Curr Opin Gastroenterol 26(2):146–151

    Article  PubMed  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84(3):389–398

    Article  CAS  PubMed  Google Scholar 

  • Tutar L, Tutar Y (2010) Heat shock proteins; an overview. (2010). Curr Pharm Biotechnol 11(2):216–222

    Article  CAS  PubMed  Google Scholar 

  • Veereshwarayya V, Kumar P, Rosen KM, Mestril R, Querfurt HW (2016) Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular β-amyloid-induced inhibition of complex IV and limit apoptosis. J Biol Chem 281:29468–29478

    Article  CAS  Google Scholar 

  • Verratti V, Falone S, Doria C, Pietrangelo T, Di Giulio C (2015) Kilimanjaro Abruzzo expedition: effects of high-altitude trekking on anthropometric, cardiovascular and blood biochemical parameters. Sport Sci Health 11(3):271–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Voellmy R (1994) Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit Rev Eukaryot Gene Expr 4:357–401

    CAS  PubMed  Google Scholar 

  • Wang RE (2011) Targeting heat shock proteins 70/90 and proteasome for cancer therapy. Curr Med Chem 18:4250–4264

    Article  CAS  PubMed  Google Scholar 

  • Wiechmann K, Müller H, Konig S, Wielsch N, Svatos A, Jauch J, Werz O (2017) Cell Chem Biol 24(5):614–623

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Liu Z, Ding H, Zhou Y, Doan HA, Sin KWT, Zhu ZJ, Flores R, Wen Y, Gong X, Liu O, Li YP (2017) Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat Commun 8:589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Bhuvnesh Kumar, Director, DIPAS, for his constant support and encouragement. The study was supported by the Defence Research and Development Organisation, Ministry of Defence, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Rathor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathor, R., Suryakumar, G., Singh, S.N., Kumar, B. (2019). Heat Shock Protein 60 (HSP60): Role in Skeletal Muscle Diseases and Novel Prospects for Therapy. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 60 in Human Diseases and Disorders. Heat Shock Proteins, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-23154-5_18

Download citation

Publish with us

Policies and ethics