Skip to main content

Drug-Induced Long QT Syndrome and Torsades de Pointes

  • Chapter
  • First Online:
Cardiac Repolarization

Abstract

Of the many manifestations of cardiac repolarization abnormalities, diLQTS is the most common seen in clinical practice. Prolongation of the QT interval is a useful but imperfect predictor of diLQTS that is often used to detect patients at high risk of developing the serious and life-threatening arrhythmia, torsades de pointes. Knowledge of the mechanisms responsible for diLQTS, awareness of the drugs that prolong QT, and consideration of the many patient-specific risk factors are essential elements in any prevention strategy. Current advances in the development of clinical decision support systems for management of this information and the ability to include the results of genomic testing in the electronic medical record are encouraging signs that this preventable adverse drug reaction may someday soon, in fact, be prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350:1013–22.

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz PJ, Ackerman MJ. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J. 2013;34:3109–16.

    Article  PubMed  Google Scholar 

  3. Kay GN, Plumb VJ, Arciniegas JG, Henthorn RW, Waldo AL. Torsades de pointes: the long-short initiating sequence and other clinical features: observations in 32 patients. J Am Coll Cardiol. 1983;2:806–17.

    Article  CAS  PubMed  Google Scholar 

  4. Leenhardt A, Glaser E, Burguera M, Nurnberg M, Maison-Blanche P, Coumel P. Short-coupled variant of torsade de pointes. A new electrocardiographic entity in the spectrum of idiopathic ventricular tachyarrhythmias. Circulation. 1994;89:206–15.

    Article  CAS  PubMed  Google Scholar 

  5. Fujii Y, Itoh H, Ohno S, et al. A type 2 ryanodine receptor variant associated with reduced Ca(2+) release and short-coupled torsades de pointes ventricular arrhythmia. Heart Rhythm. 2017;14:98–107.

    Article  PubMed  Google Scholar 

  6. Dessertenne F. Ventricular tachycardia with 2 variable opposing foci. Arch Mal Coeur Vaiss. 1966;59:263–72.

    CAS  PubMed  Google Scholar 

  7. Roden DM. Predicting drug-induced QT prolongation and torsades de pointes. J Physiol. 2016;594:2459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Drew BJ, Ackerman MJ, Funk M, et al. Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. Circulation. 2010;121:1047–60.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schwartz PJ, Woosley RL. Predicting the unpredictable: drug-induced QT prolongation and torsades de pointes. J Am Coll Cardiol. 2016;67:1639–50.

    Article  PubMed  Google Scholar 

  10. Monahan BP, Ferguson CL, Killeavy ES, Lloyd BK, Troy J, Cantilena LR Jr. Torsades de pointes occurring in association with terfenadine use. JAMA. 1990;264:2788–90.

    Article  CAS  PubMed  Google Scholar 

  11. Harmonisation ICo. International conference on harmonisation; guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs; availability. Notice. Fed Regist. 2005;70:61134–5.

    Google Scholar 

  12. Darpo B, Garnett C, Keirns J, Stockbridge N. Implications of the IQ-CSRC prospective study: time to revise ICH E14. Drug Saf. 2015;38(9):773–80.

    Article  PubMed  Google Scholar 

  13. Clark-Kennedy AE. Discussion on the action of quinidine in cases of cardiac disease. Proc R Soc Med. 1923;16:32–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Selzer A, Wray HW. Quinidine syncope: paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias. Circulation. 1964;30:17–26.

    Article  CAS  PubMed  Google Scholar 

  15. Moss AJ, Schwartz PJ. Delayed repolarization (QT or QTU prolongation) and malignant ventricular arrhythmias. Mod Concepts Cardiovasc Dis. 1982;51:85–90.

    CAS  PubMed  Google Scholar 

  16. Reynolds EW, Vander Ark CR. Quinidine syncope and the delayed repolarization syndromes. Mod Concepts Cardiovasc Dis. 1976;45:117–22.

    CAS  PubMed  Google Scholar 

  17. Schweitzer P, Mark H. Torsades de pointes caused by disopyramide and hypokalemia. Mt Sinai J Med. 1982;49:110–4.

    CAS  PubMed  Google Scholar 

  18. Aarskog D, Reikvam A. Torsades de pointes ventricular tachycardia induced by disopyramide at therapeutic serum concentration. Tidsskr Nor Laegeforen. 1992;112:2511–3.

    CAS  PubMed  Google Scholar 

  19. Vlasses PH, Ferguson RK, Rocci ML Jr, Raja RM, Porter RS, Greenspan AM. Lethal accumulation of procainamide metabolite in severe renal insufficiency. Am J Nephrol. 1986;6:112–6.

    Article  CAS  PubMed  Google Scholar 

  20. Woosley RL. Do H1 blockers astemizole (Hismanal) and terfenadine (Seldane) cause torsades de pointes? Eur J Cardiac Pac Elect. 1994;4:15.

    Google Scholar 

  21. Ahmad S, Wolfe S. Cisapride and torsades de pointes. Lancet. 1995;345:508.

    Article  Google Scholar 

  22. Oberg KC, Bauman JL. QT interval prolongation and torsades de pointes due to erythromycin lactobionate. Pharmacotherapy. 1995;15:687–92.

    CAS  PubMed  Google Scholar 

  23. Deamer RL, Wilson DR, Clark DS, Prichard JG. Torsades de pointes associated with high dose levomethadyl acetate (ORLAAM). J Addict Dis. 2001;20:7–14.

    Article  CAS  PubMed  Google Scholar 

  24. Krantz MJ, Lewkowiez L, Hays H, Woodroffe MA, Robertson AD, Mehler PS. Torsade de pointes associated with very-high-dose methadone. Ann Intern Med. 2002;137:501–4.

    Article  CAS  PubMed  Google Scholar 

  25. Gohn DC, Simmons TW. Polymorphic ventricular tachycardia (Torsade de Pointes) associated with the use of probucol. N Engl J Med. 1992;326:1435–6.

    CAS  PubMed  Google Scholar 

  26. Ninan B, Wertheimer A. Withdrawing drugs in the US versus other countries. Innov Pharm. 2012;3:1–4.

    Article  Google Scholar 

  27. Woosley R, Romero K, Heise C, et al. Adverse drug event causality analysis: a process for evaluating evidence and assigning drugs to risk categories for sudden death. Drug Saf. 2017;40:465–74.

    Article  CAS  PubMed  Google Scholar 

  28. Barbey JT, Soignet S. Prolongation of the QT interval and ventricular tachycardia in patients treated with arsenic trioxide for acute promyelocytic leukemia. Ann Intern Med. 2001;135:842–3.

    Article  CAS  PubMed  Google Scholar 

  29. Roden DM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin Electrophysiol. 1998;21:1029–34.

    Article  CAS  PubMed  Google Scholar 

  30. Roden DM, Anderson ME. Proarrhythmia. Handb Exp Pharmacol. 2006;171:73–97.

    Article  Google Scholar 

  31. Vicente J, Zusterzeel R, Johannesen L, et al. Mechanistic model-informed proarrhythmic risk assessment of drugs: review of the “CiPA” initiative and design of a prospective clinical validation study. Clin Pharmacol Ther. 2018;103(1):54–66.

    Article  CAS  PubMed  Google Scholar 

  32. Antzelevitch C, Zhang Z-Q, Sun Z-Q, Yan G-X. Cellular and ionic mechanisms underlying erythromycin-induced Long QT intervals and torsade de pointes. J Am Coll Cardiol. 1996;28:1836–48.

    Article  CAS  PubMed  Google Scholar 

  33. Jackman WM, Friday KJ, Anderson JL, Aliot EM, Clark M, Lazzara R. The Long QT Syndromes: a critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis. 1988;31:115–72.

    Article  CAS  PubMed  Google Scholar 

  34. Roden DM. Cellular basis of drug-induced torsades de pointes. Br J Pharmacol. 2008;154:1502–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang T, Chun YW, Stroud DM, et al. Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current. Circulation. 2014;130:224–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han J, Moe GK. Nonuniform recovery of excitability in ventricular muscle. Circ Res. 1964;14:44–60.

    Article  CAS  PubMed  Google Scholar 

  37. Ray WA, Chung CP, Murray KT, Cooper WO, Hall K, Stein CM. Out-of-hospital mortality among patients receiving methadone for noncancer pain. JAMA Intern Med. 2015;175:420–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012;366:1881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ray WA, Murray KT, Meredith S, Narasimhulu SS, Hall K, Stein CM. Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med. 2004;351:1089–96.

    Article  CAS  PubMed  Google Scholar 

  40. Leonard CE, Freeman CP, Newcomb CW, et al. Antipsychotics and the risks of sudden cardiac death and all-cause death: cohort studies in medicaid and dually-eligible medicaid-medicare beneficiaries of five states. J Clin Exp Cardiolog. 2013;Suppl 10:1–9.

    PubMed  PubMed Central  Google Scholar 

  41. Holmgren CM, Abdon NJ, Bergfeldt LB, et al. Changes in medication preceding out-of-hospital cardiac arrest where resuscitation was attempted. J Cardiovasc Pharmacol. 2014;63:497–503.

    Article  CAS  PubMed  Google Scholar 

  42. Zeltser D, Justo D, Halkin A, Prokhorov V, Heller K, Viskin S. Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine. 2003;82:282–90.

    PubMed  Google Scholar 

  43. Meid AD, von Medem A, Heider D, et al. Investigating the additive interaction of QT-prolonging drugs in older people using claims data. Drug Saf. 2017;40:133–44.

    Article  PubMed  Google Scholar 

  44. Meid AD, Bighelli I, Machler S, et al. Combinations of QTc-prolonging drugs: towards disentangling pharmacokinetic and pharmacodynamic effects in their potentially additive nature. Ther Adv Psychopharmacol. 2017;7:251–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Woosley RL, Black K, Heise CW, Romero K. CredibleMeds.org: what does it offer? Trends Cardiovasc Med. 2018;28(2):94–9.

    Article  PubMed  Google Scholar 

  46. Romero K, Woosley RL. Clarification to the www.qtdrugs.org updated lists. Pharmacoepidemiol Drug Saf. 2009;18:423–4.

    Article  PubMed  Google Scholar 

  47. Viskin S, Rosovski U, Sands AJ, et al. Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm. 2005;2:569–74.

    Article  PubMed  Google Scholar 

  48. LaPointe NM, Al-Khatib SM, Kramer JM, Califf RM. Knowledge deficits related to the QT interval could affect patient safety. Ann Noninvasive Electrocardiol. 2003;8:157–60.

    Article  PubMed  Google Scholar 

  49. Sarganas G, Garbe E, Klimpel A, Hering RC, Bronder E, Haverkamp W. Epidemiology of symptomatic drug-induced long QT syndrome and Torsade de Pointes in Germany. Europace. 2014;16:101–8.

    Article  PubMed  Google Scholar 

  50. Cheng YJ, Nie XY, Chen XM, et al. The role of macrolide antibiotics in increasing cardiovascular risk. J Am Coll Cardiol. 2015;66:2173–84.

    Article  CAS  PubMed  Google Scholar 

  51. Roden DM, Woosley RL, Primm RK. Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. Am Heart J. 1986;111:1088–93.

    Article  CAS  PubMed  Google Scholar 

  52. Gowda RM, Khan IA, Punukollu G, Vasavada BC, Sacchi TJ, Wilbur SL. Female preponderance in ibutilide-induced torsade de pointes. Int J Cardiol. 2004;95:219–22.

    Article  PubMed  Google Scholar 

  53. Roden DM. Usefulness of sotalol for life-threatening ventricular arrhythmias. Am J Cardiol. 1993;72:51A–5A.

    Article  CAS  PubMed  Google Scholar 

  54. Pratt CM, Al-Khalidi HR, Brum JM, et al. Cumulative experience of azimilide-associated torsades de pointes ventricular tachycardia in the 19 clinical studies comprising the azimilide database. J Am Coll Cardiol. 2006;48:471–7.

    Article  PubMed  Google Scholar 

  55. Molokhia M, Pathak A, Lapeyre-Mestre M, Caturla L, Montastruc JL, McKeigue P. Case ascertainment and estimated incidence of drug-induced long-QT syndrome: study in Southwest France. Br J Clin Pharmacol. 2008;66:386–95.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Astrom-Lilja C, Odeberg JM, Ekman E, Hagg S. Drug-induced torsades de pointes: a review of the Swedish pharmacovigilance database. Pharmacoepidemiol Drug Saf. 2008;17:587–92.

    Article  PubMed  Google Scholar 

  57. Raschi E, Poluzzi E, Salvo F, et al. The contribution of national spontaneous reporting systems to detect signals of torsadogenicity: issues emerging from the ARITMO project. Drug Saf. 2016;39:59–68.

    Article  PubMed  Google Scholar 

  58. Vandael E, Vandenberk B, Vandenberghe J, Pince H, Willems R, Foulon V. Incidence of Torsade de Pointes in a tertiary hospital population. Int J Cardiol. 2017;243:511–5.

    Article  PubMed  Google Scholar 

  59. Pearson EC, Woosley RL. QT prolongation and torsades de pointes among methadone users: reports to the FDA spontaneous reporting system. Pharmacoepidemiol Drug Saf. 2005;14:747–53.

    Article  CAS  PubMed  Google Scholar 

  60. Woosley RL, Chen Y, Freiman JP, Gillis RA. Mechanism of the cardiotoxic actions of terfenadine. JAMA. 1993;269:1532–6.

    Article  CAS  PubMed  Google Scholar 

  61. Hennessy S, Bilker WB, Knauss JS, et al. Cardiac arrest and ventricular arrhythmia in patients taking antipsychotic drugs: cohort study using administrative data. BMJ. 2002;325:1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Straus SM, Sturkenboom MC, Bleumink GS, et al. Non-cardiac QTc-prolonging drugs and the risk of sudden cardiac death. Eur Heart J. 2005;26:2007–12.

    Article  PubMed  Google Scholar 

  63. Rao GA, Mann JR, Shoaibi A, et al. Azithromycin and levofloxacin use and increased risk of cardiac arrhythmia and death. Ann Fam Med. 2014;12:121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mosholder AD, Mathew J, Alexander JJ, Smith H, Nambiar S. Cardiovascular risks with azithromycin and other antibacterial drugs. N Engl J Med. 2013;368:1665–8.

    Article  CAS  PubMed  Google Scholar 

  65. Svanstrom H, Pasternak B, Hviid A. Use of clarithromycin and roxithromycin and risk of cardiac death: cohort study. BMJ. 2014;349:g4930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Woosley RL, Whyte J, Mohamadi A, Romero K. Medical decision support systems and therapeutics: the role of autopilots. Clin Pharmacol Ther. 2016;99:161–4.

    Article  CAS  PubMed  Google Scholar 

  67. Trac MH, McArthur E, Jandoc R, et al. Macrolide antibiotics and the risk of ventricular arrhythmia in older adults. CMAJ. 2016;188:E120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pedersen HS, Elming H, Seibaek M, et al. Risk factors and predictors of Torsade de pointes ventricular tachycardia in patients with left ventricular systolic dysfunction receiving Dofetilide. Am J Cardiol. 2007;100:876–80.

    Article  CAS  PubMed  Google Scholar 

  69. Allen LaPointe NM, Chen A, Hammill B, DeLong E, Kramer JM, Califf RM. Evaluation of the dofetilide risk-management program. Am Heart J. 2003;146:894–901.

    Article  CAS  PubMed  Google Scholar 

  70. Haugaa KH, Bos JM, Tarrell RF, Morlan BW, Caraballo PJ, Ackerman MJ. Institution-wide QT alert system identifies patients with a high risk of mortality. Mayo Clin Proc. 2013;88:315–25.

    Article  PubMed  Google Scholar 

  71. Sorita A, Bos JM, Morlan BW, Tarrell RF, Ackerman MJ, Caraballo PJ. Impact of clinical decision support preventing the use of QT-prolonging medications for patients at risk for torsade de pointes. J Am Med Inform Assoc. 2015;22:e21–7.

    Article  PubMed  Google Scholar 

  72. Tisdale JE, Jaynes HA, Kingery JR, et al. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes. 2013;6:479–87.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tisdale JE, Jaynes HA, Kingery JR, et al. Effectiveness of a clinical decision support system for reducing the risk of QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes. 2014;7:381–90.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vandael E, Vandenberk B, Vandenberghe J, Willems R, Foulon V. Risk factors for QTc-prolongation: systematic review of the evidence. Int J Clin Pharm. 2017;39:16–25.

    Article  PubMed  Google Scholar 

  75. Vandael E, Vandenberk B, Vandenberghe J, Spriet I, Willems R, Foulon V. Development of a risk score for QTc-prolongation: the RISQ-PATH study. Int J Clin Pharm. 2017;39:424–32.

    Article  PubMed  Google Scholar 

  76. Vandael E, Vandenberk B, Willems R, Reyntens J, Vandenberghe J, Foulon V. Risk management of hospitalized psychiatric patients taking multiple QTc-prolonging drugs. J Clin Psychopharmacol. 2017;37:540–5.

    Article  CAS  PubMed  Google Scholar 

  77. Redfern WS, Carlsson L, Davis AS, et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32–45.

    Article  CAS  PubMed  Google Scholar 

  78. Kongsamut S, Kang J, Chen XL, Roehr J, Rampe D. A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur J Pharmacol. 2002;450:37–41.

    Article  CAS  PubMed  Google Scholar 

  79. Soyka LF, Wirtz C, Spangenberg RB. Clinical safety profile of sotalol in patients with arrhythmias. Am J Cardiol. 1990;65:74A–81A.

    Article  CAS  PubMed  Google Scholar 

  80. Meyer-Massetti C, Cheng CM, Sharpe BA, Meier CR, Guglielmo BJ. The FDA extended warning for intravenous haloperidol and torsades de pointes: how should institutions respond? J Hosp Med. 2010;5:E8–16.

    Article  PubMed  Google Scholar 

  81. Okabe Y, Otowa K, Mitamura Y, et al. Evaluation of the risk factors for ventricular arrhythmias secondary to QT prolongation induced by papaverine injection during coronary flow reserve studies using a 4 Fr angio-catheter. Heart Vessel. 2018;33(11):1358–64.

    Article  Google Scholar 

  82. Hancox JC, Hasnain M, Vieweg WV, Gysel M, Methot M, Baranchuk A. Erythromycin, QTc interval prolongation, and torsade de pointes: case reports, major risk factors and illness severity. Ther Adv Infect Dis. 2014;2:47–59.

    PubMed  PubMed Central  Google Scholar 

  83. Yang P, Kanki H, Drolet B, et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation. 2002;105:1943–8.

    Article  CAS  PubMed  Google Scholar 

  84. Crotti L, Schwartz PJ. Drug-induced long QT syndrome and exome sequencing: Chinese shadows link past and future. J Am Coll Cardiol. 2014;63:1438–40.

    Article  PubMed  Google Scholar 

  85. Kaab S, Crawford DC, Sinner MF, et al. A large candidate gene survey identifies the KCNE1 D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ Cardiovasc Genet. 2012;5:91–9.

    Article  PubMed  CAS  Google Scholar 

  86. Behr ER, Ritchie MD, Tanaka T, et al. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes. PLoS One. 2013;8:e78511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramirez AH, Shaffer CM, Delaney JT, et al. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J. 2013;13:325–9.

    Article  CAS  PubMed  Google Scholar 

  88. Weeke P, Mosley JD, Hanna D, et al. Exome sequencing implicates an increased burden of rare potassium channel variants in the risk of drug-induced long QT interval syndrome. J Am Coll Cardiol. 2014;63:1430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Itoh H, Crotti L, Aiba T, et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37:1456–64.

    Article  PubMed  Google Scholar 

  90. Schwartz PJ, Ackerman MJ, George AL Jr, Wilde AAM. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol. 2013;62:169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Niemeijer MN, van den Berg ME, Eijgelsheim M, Rijnbeek PR, Stricker BH. Pharmacogenetics of drug-induced QT interval prolongation: an update. Drug Saf. 2015;38(10):855–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Levran O, Peles E, Randesi M, et al. Association of genetic variation in pharmacodynamic factors with methadone dose required for effective treatment of opioid addiction. Pharmacogenomics. 2013;14:755–68.

    Article  CAS  Google Scholar 

  93. Tamblyn R, Eguale T, Buckeridge DL, et al. The effectiveness of a new generation of computerized drug alerts in reducing the risk of injury from drug side effects: a cluster randomized trial. J Am Med Inform Assoc. 2012;19:635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Seidling HM, Klein U, Schaier M, et al. What, if all alerts were specific - estimating the potential impact on drug interaction alert burden. Int J Med Inform. 2014;83:285–91.

    Article  PubMed  Google Scholar 

  95. Bryant AD, Fletcher GS, Payne TH. Drug interaction alert override rates in the meaningful use era: no evidence of progress. Appl Clin Inform. 2014;5:802–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Payne TH, Hines LE, Chan RC, et al. Recommendations to improve the usability of drug-drug interaction clinical decision support alerts. J Am Med Inform Assoc. 2015;22:1243–50.

    Article  PubMed  Google Scholar 

  97. Ashar FN, Mitchell RN, Albert CM, et al. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J. 2018;39(44):3961–9.

    Article  CAS  PubMed  Google Scholar 

  98. Schwartz PJ, Gentilini D. Can genetics predict risk for sudden cardiac death? The relentless search for the holy grail. Eur Heart J. 2018;39(44):3970–2.

    Article  PubMed  Google Scholar 

  99. Schwartz PJ, Wolf S. QT interval prolongation as predictor of sudden death in patients with myocardial infarction. Circulation. 1978;57:1074–7.

    Article  CAS  PubMed  Google Scholar 

  100. Bloomfield RA Jr, Polo-Wood F, Mandel JC, Mandl KD. Opening the Duke electronic health record to apps: implementing SMART on FHIR. Int J Med Inform. 2017;99:1–10.

    Article  PubMed  Google Scholar 

  101. Roden DM, Van Driest SL, Mosley JD, et al. Benefit of pre-emptive pharmacogenetic information on clinical outcome. Clin Pharmacol Ther. 2018;103(5):787–94.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chung EH, Guise KD. QTC intervals can be assessed with the AliveCor heart monitor in patients on dofetilide for atrial fibrillation. J Electrocardiol. 2015;48:8–9.

    Article  PubMed  Google Scholar 

  103. Castelletti S, Dagradi F, Goulene K, et al. A wearable remote monitoring system for the identification of subjects with a prolonged QT interval or at risk for drug-induced long QT syndrome. Int J Cardiol. 2018;266:89–94.

    Article  PubMed  Google Scholar 

  104. Verrier RL. The power of the patch: a smart way to track risk for Torsades de pointes in congenital and drug-induced long QT syndromes? Int J Cardiol. 2018;266:145–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond L. Woosley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woosley, R.L., Schwartz, P.J. (2020). Drug-Induced Long QT Syndrome and Torsades de Pointes. In: El-Sherif, N. (eds) Cardiac Repolarization. Springer, Cham. https://doi.org/10.1007/978-3-030-22672-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22672-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22671-8

  • Online ISBN: 978-3-030-22672-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics