Skip to main content

An Iteration Method for X-Ray CT Reconstruction from Variable-Truncation Projection Data

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

In this paper, we investigate the in-situ X-ray CT reconstruction from occluded projection data. For each X-ray beam, we propose a method to determine whether it passes through a measured object by comparing the observed data before and after the measured object is placed. Therefore, we can obtain a prior knowledge of the object, that is some points belonging to the background, from the X-ray beam paths that do not pass through the object. We incorporate this prior knowledge into the sparse representation method for in-situ X-ray CT reconstruction from occluded projection data. In addition, the regularization parameter can be determined easily using the artifact severity estimation on the identified background points. Numerical experiments on simulated data with different noise levels are conducted to verify the effectiveness of the proposed method.

S. Luo was supported by the National Natural Science Foundation of China via Grant A011703. Programs for Science and Technology Development of He’nan Province (192102310181). Y. Dong was supported by the National Natural Science Foundation of China via Grant 11701388. X. C. Tai was supported by the startup grant at Hong Kong Baptist University, grants RG(R)-RC/17-18/02-MATH and FRG2/17-18/033. Y. Wang was supported in part by the Hong Kong Research Grant Council grants 16306415 and 16308518.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  2. Bao, C., Cai, J.F., Ji, H.: Fast sparsity-based orthogonal dictionary learning for image restoration. In: IEEE International Conference on Computer Vision (2013)

    Google Scholar 

  3. Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011)

    Article  MathSciNet  Google Scholar 

  4. Boas, F.E., Fleischmann, D.: Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Int. J. Med. Radiol. 259(3), 894–902 (2011)

    Google Scholar 

  5. Boas, F.E., Fleischmann, D.: CT artifacts: causes and reduction techniques. Imaging Med. 4(2), 229–240 (2012)

    Article  Google Scholar 

  6. Borg, L., Jørgensen, J.S., Frikel, J., Sporring, J.: Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography. Measur. Sci. Technol. 28 (2017). 12004(19)

    Article  Google Scholar 

  7. Buffiere, J.Y., Maire, E., Adrien, J., Masse, J.P., Boller, E.: In situ experiments with X-ray tomography: an attractive tool for experimental mechanics. Exp. Mech. 50(3), 289–305 (2010)

    Article  Google Scholar 

  8. Cai, A., Li, L., Zheng, Z., Wang, L., Yan, B.: Block-matching sparsity regularization-based image reconstruction for low-dose computed tomography. Med. Phys. 45(6), 2439–2452 (2018)

    Article  Google Scholar 

  9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  10. Debatin, M., Hesser, J.: Accurate low-dose iterative CT reconstruction from few projections by generalized anisotropic total variation minimization for industrial CT. J. X-ray Sci. Technol. 23(6), 701–726 (2015)

    Article  Google Scholar 

  11. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  12. Gjesteby, L., et al.: Metal artifact reduction in CT: where are we after four decades? IEEE Access 4(99), 5826–5849 (2016)

    Article  Google Scholar 

  13. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction From Projections. Springer, London (2009). https://doi.org/10.1007/978-1-84628-723-7

    Book  MATH  Google Scholar 

  14. Hu, H., Wohlberg, B., Chartrand, R.: Task-driven dictionary learning for inpainting. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3543–3547 (2014)

    Google Scholar 

  15. Michal, A., Michael, E., Alfred, B.: K-SVD: an algorithm for designing over complete dictionaries for sparse representation. IEEE Trans. Sign. Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  16. Natterer, F., Wubbeling, F., Wang, G.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  17. Soltani, S., Kilmer, M.E., Hansen, P.C.: A tensor-based dictionary learning approach to tomographic image reconstruction. BIT Numer. Math. 56(4), 1425–1454 (2016)

    Article  MathSciNet  Google Scholar 

  18. Terzi, S., et al.: In situ x-ray tomography observation of inhomogeneous deformation in semi-solid aluminum alloys. Scripta Mater. 61(5), 449–452 (2009)

    Article  Google Scholar 

  19. Tian, Z., Xun, J., Yuan, K., Jiang, S.: TU-B-201B-03: CT reconstruction from undersampled projection data via edge-preserving total variation regularization. Med. Phys. 37(6Part6), 3378 (2010)

    Article  Google Scholar 

  20. Veldkamp, W.J.H., Joemai, R.M.S., van der Molen, G., Jacob, G.: Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med. Phys. 37(2), 620–628 (2010)

    Article  Google Scholar 

  21. Wang, B., Li, L.: Recent development of dual-dictionary learning approach in medical image analysis and reconstruction. Comput. Math. Methods Med. 2015(2), 1–9 (2015)

    MATH  Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Xu, Q., Yu, H., Mou, X., Zhang, L., Hsieh, J., Wang, G.: Low-dose x-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 31(9), 1682–1697 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shousheng Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, L., Luo, S., Dong, Y., Tai, XC., Wang, Y. (2019). An Iteration Method for X-Ray CT Reconstruction from Variable-Truncation Projection Data. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics