Skip to main content

Biological Individuality – A Complex Pattern of Distributed Uniqueness

  • Chapter
  • First Online:
The Extended Theory of Cognitive Creativity

Part of the book series: Perspectives in Pragmatics, Philosophy & Psychology ((PEPRPHPS,volume 23))

Abstract

None of the concepts thus far advanced by biologists or philosophers of life covers in a satisfactory way all instances and aspects of biological individuality. Two main, only partially overlapping notions must be distinguished: physiological individuality, based on morphological or molecular attributes, and evolutionary individuality, based on the uniqueness of the role played by the individual in evolutionary processes. The three individuality criteria suggested by Pradeu (2012), i.e. uniqueness, delineation and persistence, are useful as a rough guide, but their application faces serious problems or limitations, e.g. with polygenomic organisms or polyembryonic metazoans. Persistence of individuality throughout development deserves accurate revisitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberch, P. (1991). From genes to phenotype: Dynamical systems and evolvability. Genetica, 84(1), 5–11.

    Article  Google Scholar 

  • Booth, D.T. (2006). Influence of incubation temperature on hatchling phenotype in reptiles. Physiological and Biochemical Zoology, 79(2), 274–281.

    Article  Google Scholar 

  • Carter, C.A., & Wourms, J.P. (1993). Naturally occurring diblastodermic eggs in the annual fish Cynolebias: Implications for developmental regulation and determination. Journal of Morphology, 215(3), 301–312.

    Article  Google Scholar 

  • Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.

    Google Scholar 

  • Epstein, M. (2012). Nomenclature, terminology and language. Bionomina, 5, 1–56.

    Article  Google Scholar 

  • Ferguson, M.W., & Joanen, T. (1982). Temperature of egg incubation determines sex in Alligator mississippiensis. Nature, 296(5860), 850–853.

    Article  Google Scholar 

  • Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution. Philosophical Transactions of the Royal Society of London, 365(1540), 547–556.

    Article  Google Scholar 

  • Gene Ontology Consortium. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25(1), 25–29.

    Article  Google Scholar 

  • Ghiselin, M.T. (1997). Metaphysics and the origin of species. Albany: State University of New York Press.

    Google Scholar 

  • Gilbert, S.F., & Epel, D. (2015). Ecological developmental biology: The environmental regulation of development, health, and evolution (2nd ed.). Sunderland: Sinauer.

    Google Scholar 

  • Gilbert, S.F., Sapp, J., & Tauber, A.I. (2012). A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology, 87(4), 325–341.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2009). Darwinian populations and natural selection. New York: Oxford University Press.

    Book  Google Scholar 

  • Grbic, M. (2003). Polyembryony in parasitic wasps: Evolution of a novel mode of development. International Journal of Developmental Biology, 47(7/8), 633–642.

    Google Scholar 

  • Hallez, P. (1887). Embryogénie des dendrocoeles d’eau douce. Mémoires de la Société des sciences, de l’agriculture et des arts de Lille, 16, 1–107.

    Google Scholar 

  • Harper, J.L., & White, J. (1974). The demography of plants. Annual Review of Ecology and Systematics, 5, 419–463.

    Article  Google Scholar 

  • Hendrikse, J.L., Parsons, T.E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9(4), 393–401.

    Article  Google Scholar 

  • Hoendorf, R., Alshahrani, M., Gkoutos, G.V., Gosline, G., Groom, Q., Hamman, T., Kattge, J., de Oliveira, S.M., Schmidt, M., Sierra, S., Smets, E., Vos, R.A., & Weiland, C. (2016). The flora phenotype ontology (FLOPO): Tool for integrating morphological traits and phenotypes of vascular plants. Journal of Biomedical Semantics, 7, 65.

    Article  Google Scholar 

  • Huxley, T.H. (1852). Upon animal individuality. Proceedings of the Royal Institution of Great Britain, 11, 184–189.

    Google Scholar 

  • Koch, P.B. (1992). Seasonal polyphenism in butterflies: A hormonally controlled phenomenon of pattern formation. Zoologische Jahrbücher, Abteilung für Allgemeine Zoologie und Physiologie der Tiere, 96, 227–240.

    Google Scholar 

  • Linnaeus, C. (1758). Systema Naturae per regna tria Naturae secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Editio decima, Holmiae, apud Laurentium Salvium.

    Google Scholar 

  • Luan, J.B., Sun, X.P., Fei, Z.J., & Douglas, A.E. (2018). Maternal inheritance of a single somatic Animal cell displayed by the bacteriocyte in the whitefly Bemisia tabaci. Current Biology, 28(3), 459–465.

    Article  Google Scholar 

  • Maslakova, S.A. (2010). Development to metamorphosis of the nemertean pilidium larva. Frontiers in Zoology, 7, 30.

    Article  Google Scholar 

  • Matthes, D. (1988). Tierische Parasiten. Biologie und Ökologie. Braunschweig-Wiesbaden: Vieweg.

    Book  Google Scholar 

  • McFall-Ngai, M.J. (2002). Unseen forces: The influences of bacteria on animal development. Developmental Biology, 242(1), 1–14.

    Article  Google Scholar 

  • Minelli, A. (2011). Development, an open-ended segment of life. Biological Theory, 6(1), 4–15.

    Article  Google Scholar 

  • Minelli, A. (2014). Developmental disparity. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 227–245). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Minelli, A. (2017). Evolvability and its evolvability. In P. Huneman & D. Walsh (Eds.), Challenges to evolutionary theory: Development, inheritance and adaptation (pp. 211–238). New York: Oxford University Press.

    Google Scholar 

  • Minelli, A., & Pradeu, T. (Eds.). (2014). Towards a theory of development. Oxford: Oxford University Press.

    Google Scholar 

  • Müller, H.J. (1955). Die Saisonformenbildung von Araschnia levana, ein photoperiodisch gesteuerter Diapauseeffekt. Die Naturwissenschaften, 42(5), 134–135.

    Article  Google Scholar 

  • Müller, G.B., & Newman, S.A. (2005). The innovation triad: An EvoDevo agenda. Journal of Experimental Zoology (Molecular and Developmental Evolution), 304B(6), 487–503.

    Article  Google Scholar 

  • Müller, G.B., & Wagner, G.P. (2003). Innovation. In B.K. Hall & W.M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 218–227). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Pallas P.S. (1766). Elenchus zoophytorum sistens generum adunbrationes generaliores et specierum cognitarum succinctas descriptiones cum selectis auctorum synonymis, Hagae, apud Petrum van Cleef.

    Google Scholar 

  • Peterson, T., & Müller, G.B. (2013). What is evolutionary novelty? Process versus character based definitions. Journal of Experimental Zoology (Molecular and Developmental Evolution), 320B(6), 345–350.

    Article  Google Scholar 

  • Peterson, T., & Müller, G.B. (2016). Phenotypic novelty in EvoDevo: The distinction between continuous and discontinuous variation and its importance in evolutionary theory. Evolutionary Biology, 43(3), 314–335.

    Article  Google Scholar 

  • Pigliucci, M. (2001). Phenotypic plasticity: Beyond nature and nurture. Baltimore: John Hopkins University Press.

    Google Scholar 

  • Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics, 9(1), 75–82.

    Article  Google Scholar 

  • Pradeu, T. (2011). A mixed self: The role of symbiosis in development. Biological Theory, 6(1), 80–88.

    Article  Google Scholar 

  • Pradeu, T. (2012). The limits of the self: Immunology and biological identity. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Pradeu, T. (2016). Organisms or biological individuals? Combining physiological and evolutionary individuality. Biology and Philosophy, 31(6), 797–817.

    Article  Google Scholar 

  • Pradeu, T., Laplane, L., Prévot, K., Hoquet, T., Reynaud, V., Fusco, G., Minelli, A., Orgogozo, V., & Vervoort, M. (2016). Defining “Development”. Current Topics in Developmental Biology, 117, 171–183.

    Article  Google Scholar 

  • Ross, C.N., French, J.A., & Orte, G. (2007). Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii). Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6278–6282.

    Article  Google Scholar 

  • Santelices, B. (1999). How many kinds of individual are there? Trends in Ecology & Evolution, 14(4), 152–155.

    Article  Google Scholar 

  • Schleiden, M.J. (1838). Beiträge zur Phytogenesis. Archiv für Anatomie Physiologie und wissenschaftliche Medicin, 1838, 137–176.

    Google Scholar 

  • Schlosser, G., & Wagner, G.P. (2003). Introduction: The modularity concept in developmental and evolutionary biology. In G. Schlosser & G.P. Wagner (Eds.), Modularity in development and evolution (pp. 1–11). Chicago: University of Chicago Press.

    Google Scholar 

  • Schwann, T. (1839). Mikroskopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Berlin: Sander.

    Google Scholar 

  • Tadros, W., & Lipshitz, H.D. (2009). The maternal-to-zygotic transition: A play in two acts. Development, 136, 3033–3042.

    Article  Google Scholar 

  • Treviranus, G.R. (1802–1822). Biologie: oder Philosophie der lebenden Natur. Gottingen: Röwer.

    Google Scholar 

  • Valenzuela, N., & Lance, V. (Eds.). (2004). Temperature-dependent sex determination in vertebrates. Washington, DC: Smithsonian Institution.

    Google Scholar 

  • Van de Vyver, G., & Willenz, P. (1975). An experimental study of the life-cycle of the fresh-water sponge Ephydatia fluviatilis in its natural surroundings. Wilhelm Roux’s Archives of Developmental Biology, 177(1), 41–52.

    Article  Google Scholar 

  • Vogt, L. (2008). Learning from Linnaeus: Towards developing the foundation for a general structure concept for morphology. Zootaxa, 1950, 123–152.

    Article  Google Scholar 

  • Vogt, L. (2009). The future role of bio-ontologies for developing a general data standard in biology: Chance and challenge for zoomorphology. Zoomorphology, 128(3), 201–217.

    Article  Google Scholar 

  • Vogt, L., Bartolomaeus, T., & Giribet, G. (2010). The linguistic problem of morphology: Structure versus homology and the standardization of morphological data. Cladistics, 26(3), 301–325.

    Article  Google Scholar 

  • Wagner, G.P., & Altenberg, L. (1996). Complex adaptations and evolution of evolvability. Evolution, 50(3), 967–976.

    Article  Google Scholar 

  • West-Eberhard, M.J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.

    Google Scholar 

  • Wilson, J. (1999). Biological individuality: The identity and persistence of living entities. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Winther, R.G. (2015). Evo-devo as a trading zone. In A.C. Love (Ed.), Conceptual change in biology: Scientific and philosophical perspectives on evolution and development (pp. 459–482). Dordrecht: Springer.

    Google Scholar 

  • Zachos, F.E. (2016). Species concepts in biology. Historical development, theoretical foundations and practical relevance. Cham: Springer International Publishing Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Minelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minelli, A. (2020). Biological Individuality – A Complex Pattern of Distributed Uniqueness. In: Pennisi, A., Falzone, A. (eds) The Extended Theory of Cognitive Creativity. Perspectives in Pragmatics, Philosophy & Psychology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-22090-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22090-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22089-1

  • Online ISBN: 978-3-030-22090-7

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics