Skip to main content

Assessment and Evaluation of Body Temperature

  • Chapter
  • First Online:
Understanding Fever and Body Temperature

Abstract

Evaluation of body temperature is an important sign of health and disease, in everyday life, for medical decisions, for nursing care, and when ordering laboratory tests. When assessing body temperature, we has to understand thermoregulatory mechanisms, and also consider several ‘errors’, such as the influence of gender, age and the site of measurement. When definitions of normal body temperature as 37 °C and ‘fever’ as 38 °C was established in the 1900 century, little was known about thermoregulation, immunology, and microbiology. Although today there is a general acceptance of body temperature as a range rather than a fixed temperature, the 1871 definitions of normal body temperature and fever still are considered the world-wide norm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wunderlich CA, Seguin E. Medical thermometry and human temperature. New York: William Wood & Co; 1871. 280 p.

    Google Scholar 

  2. Mackowiak PA. Clinical thermometric measurements. In: Mackowiak PA, editor. Fever basic mechanisms and management, vol. 2. Philadelphia/New York: Lippincott Raven; 1997. p. 27–33.

    Google Scholar 

  3. Sund-Levander M, Grodzinsky E. Accuracy when assessing and evaluating body temperature in clinical practice: time for a change. Thermology International. 2012;22(Appendix 1 Number 3):25–32.

    Google Scholar 

  4. Mackowiak PA, Worden G. Carl Reinhold August Wunderlich and the evolution of clinical thermometry. Clin Infect Dis. 1994;18:458–67.

    Article  Google Scholar 

  5. Sund Levander M, Grodzinsky E. Variation in normal ear temperature. Am J Med Sci. 2017;354(4):370–8.

    Article  Google Scholar 

  6. Sund-Levander M, Forsberg C, Wahren LK. Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand J Caring Sci. 2002;16(2):122–8.

    Article  Google Scholar 

  7. Galen, R and Gambino S, Beyond Normality: The Predictive Value and Efficiency of Medical Diagnosis, 1975, New York: Columbia University College of Physicians and Surgeons, John Willey& Sons.

    Google Scholar 

  8. Aschoff J, Kleitman N, Halberg F, Klinker L, Simpson H, Bonlen J. Seasonal changes in the circadian variation of oral temperature during wakefulness. Experientia. 1975;11:1296–8.

    Google Scholar 

  9. Sund-Levander M, Grodzinsky E, Loyd D, Wahren LK. Error in body temperature assessment related to individual variation, measuring technique and equipment. Int J Nurs Pract. 2004;10:216–23.

    Article  Google Scholar 

  10. Chamberlain JM, Terndrup TE, Alexander DT, Silverstone FA, Wolf-Klein G, O’Donell R, et al. Determination of normal ear temperature with an infrared emission detection thermometer. Ann Emerg Med. 1995;25:15–20.

    Article  Google Scholar 

  11. Baker F, Mitchell D, Driver H. Oral contraceptives alter sleep and raise body temperature in young women. Eur J Phys. 2001;424:729–37.

    Article  Google Scholar 

  12. Cabanac M. Thermiatrics and behaviour. In: Blatties CM, editor. Physiology and pathophysiology of temperature regulation. Singapore: World Scientific Publishing Co. Pte. Ltd; 1998. p. 108–25.

    Google Scholar 

  13. Elia M, Ritz P, Stubbs R. Total energy expenditure in the elderly. Eur J Clin Nutr. 2000;54(Suppl 3):S92–103.

    Article  Google Scholar 

  14. Frank S, Raja S, Bulcao C, Goldstein D. Age-related thermoregulatory differences during core cooling in humans. Am J Physiol Regul Integr Comp Physiol. 2000;279:349–54.

    Article  Google Scholar 

  15. Kenney W, Munce T. Invited review: aging and human temperature regulation. J Appl Physiol. 2003;95(6):2598–603.

    Article  Google Scholar 

  16. Minson C, Holowatz L, Wong B. Decreased nitric oxide- and axon reflex-mediated cutaneous vasodilation with age during local heating. J Appl Physiol. 2002;93:1644–9.

    Article  Google Scholar 

  17. Pierzga J, Frymoyer A, Kenney W. Delayed distribution of active vasodilation and altered vascular conductance in aged skin. J Appl Physiol. 2003;94:1045–53.

    Article  Google Scholar 

  18. Morita S, Matsuyama T, Ehara N, Miyamae N, Okada Y, Jo T, et al. Prevalence and outcomes of accidental hypothermia among elderly patients in Japan: data from the J-Point registry. Geriatr Gerontol Int. 2018;18:1427–32.

    Article  Google Scholar 

  19. Lu SS, Leasure A, Dai Y. A systematic review of body temperature variations in older people. J Clin Nurs. 2010;19(1–2):4–16.

    Article  Google Scholar 

  20. McGann KP, Marion GS, Lawrence D, Spangler JG. The influence of gender and race of mean body temperature in a population of healthy older adults. Arch Family Medicine. 1993;2:1265–7.

    Article  Google Scholar 

  21. Kiekkas P, Stefanopoulos N, Bakalis N, Kefaliakos A, Karanikolas M. Agreement of infrared temporal artery thermometry with other thermometry methods in adults: systematic review. J Clin Nurs. 2016;25:894–905.

    Article  Google Scholar 

  22. Sund-Levander M, Wahren LK. The impact of ADL-status, dementia and body mass index on normal body temperature in elderly nursing home residents. Arch Gerontol Geriatr. 2002;35:161–9.

    Article  Google Scholar 

  23. Bruunsgaard H, Pedersen M, Klarlund Pedersen BK. Aging and proinflammatory cytokines. Current Opinion in Haematology. 2001;8:131–6.

    Article  Google Scholar 

  24. Klegeris A, Schulzer M, Harper D, McGeer P. Increase in core body temperature of Alzheimer’s disease patients as a possible indicator of chronic neuroinflammation: a meta-analysis. Gerontology. 2007;53:7–11.

    Article  Google Scholar 

  25. Most E, Scheltens P, Van Someren E. Increased skin temperature in Alzheimer’s disease is associated with sleepiness. J Neural Transm. 2012;119:1185–94.

    Article  Google Scholar 

  26. Yeoh W, Lee J, Lim H, Gan W, Tan K. Re-visiting the tympanic membrane vicinity as core body temperature measurement site. PLOSone. 2017;17:1–21.

    Google Scholar 

  27. Mercer J. Glossary of terms for thermal physiology, third edition. Jpn J Physiol. 2001;51:245–80.

    Google Scholar 

  28. Pursell E, While A, Coomber B. Tympanic thermometry- normal temperature and reliability. Paediatric Nursing. 2009;21(6):40–3.

    Google Scholar 

  29. Betta V, Cascetta F, Sepe D. An assessment of infrared tympanic thermometers for body temperature measurement. Physiol Meas. 1997;18:215–25.

    Article  Google Scholar 

  30. Earp JK. Thermal gradients and shivering following open heart surgery. Dimens Crit Care Nurs. 1989;8(5):266–73.

    Article  Google Scholar 

  31. Sund-Levander M, Grodzinsky E. Time for a change to assess and evaluate body temperature in clinical practice. Int J Nurs Pract. 2009;15:241–9.

    Article  Google Scholar 

  32. Terndrup TE. An appraisal of temperature assessment by infrared emission detection tympanic thermometry. Ann Emerg Med. 1992;21(12):1483–92.

    Article  Google Scholar 

  33. EF DB. The many different temperatures of the human body and its parts. Western Journal of Surgery. 1951;59:476–90.

    Google Scholar 

  34. EFJ R, McEvoy H, Jungs A, Ubers J, Nachin M. New standards for devices used for the measurement of human body temperature. J Med Eng Technol. 2010;34(4):249–53.

    Article  Google Scholar 

  35. McCarthy P, Heusch A. The vagaries of ear temperature assessment. J Med Eng Technol. 2006;30(4):242–51.

    Article  Google Scholar 

  36. Sund-Levander M, Tingtröm P. Fever or not fever – that’s the question: a cohort study of simultaneously measured rectal and ear temperatures in febrile patients with suspected infection. Clinical Nursing Studies. 2018;6(2):48–54.

    Google Scholar 

  37. Chen ZM, Zhiang XB, Li Long M, Yu Pu M. Accuracy of infrared ear thermometry in children: a meta-analysis and systematic review. Clin Pediatr. 2014;53:1158–65.

    Article  Google Scholar 

  38. Niven D, Gaudet J, Laupland K, Mrklas K, Roberts D, Stelfox H. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Ann Intern Med. 2015;163:768–77.

    Article  Google Scholar 

  39. Geijer H, Udumyan R, Lohse G, Nilsagard Y. Temperature measurements with a temporal scanner: systematic review and meta-analysis. BMJ Open [Internet]. 2016; 6:e009509.

    Article  Google Scholar 

  40. Chiappin E, Venturini E, Remaschi G, Principi N, Longhi R, Tovo P, et al. 2016 update of the Italian pediatric society guidelines for management of fever in children. J Pediatr. 2017;180:177–83.

    Article  Google Scholar 

  41. Grodzinsky E, Sund Levander M, editors. Assessment of fever. Physiology, immunology, measurement in clinical practice. Malmö: Gleerups; 2015.

    Google Scholar 

  42. Smitz S, Giagoultsis T, Dewe W, Albert A. Comparison of rectal and infrared ear temperatures in older hospital inpatients. J Am Geriatr Soc. 2000;48:63–6.

    Article  Google Scholar 

  43. Zaleski M, Cooper M, Killuian M, Farnholtz-Province J, Gates K, Kamiensky M, et al. Clinical practice guideline: non-invasive temperature measurement. What method of non-invasive body temperature measurement is the most accurate and precise for use in patients (newborn to adult) in the emergency department? Clinical Practice Guideline: non-invasive temperature measurement. Emergency Nurses Association (ENA). 2015.

    Google Scholar 

  44. Blatties C. Methods of temperature measurement. In: Blatties C, editor. Physiology and pathophysiology of temperature regulation. Singapore: World Scientific Publishing Co. Pte. Ltd; 1998. p. 273–9.

    Chapter  Google Scholar 

  45. IUPS TC. Glossary of terms to thermal physiology. Pflugers Archives. 1987;410:567–87.

    Article  Google Scholar 

  46. Rotello L, Crawford L, Terndrup T. Comparison of infrared ear thermometer derived and equilibrated rectal temperatures in estimating pulmonary artery temperatures. Crit Care Med. 1996;24(9):1501–6.

    Article  Google Scholar 

  47. Sund-Levander M, Grodzinsky E. Assessment of body temperature measurement options. Br J Nurs. 2013;22(14):16–23.

    Google Scholar 

  48. Zehner WJ, Terndrup TE. The impact of moderate ambient temperature variance on the relationship between oral, rectal, and tympanic membrane temperatures. Clin Pediatr. 1991;4:61–4.

    Article  Google Scholar 

  49. Benzinger M. Tympanic thermometry in anaesthesia and surgery. J Am Med Assoc. 1969;209:1207–11.

    Article  Google Scholar 

  50. Rumana CS, Gopinath SP, Uzura M, Valadka AB, Robertson CS. Brain temperature exceeds systemic temperature in head-injured patients. Crit Care Med. 1998;26(3):562–7.

    Article  Google Scholar 

  51. Togawa T. Body temperature measurement. Clinical Physiological Measurement. 1985;6(2):83–102.

    Article  Google Scholar 

  52. Milewski A, Ferguson KL, Terndrup TE. Comparison of pulmonary artery, rectal and tympanic membrane temperatures in adult intensive care unit patients. Clin Pediatr. 1991;4(Suppl):13–6.

    Article  Google Scholar 

  53. Petersen M, Hauge H. Can training improve the results with infrared tympanic thermometers? Acta Anaesthesiol Scand. 1997;41:1066–70.

    Article  Google Scholar 

  54. Fallis W. Oral measurement of temperature in orally intubated critical care patients: state-of-the-science review. Am J Crit Care. 2000;9(5):334–43.

    Article  Google Scholar 

  55. Erickson R. Oral temperature differences in relation to thermometer and technique. Nurs Res. 1980;29:157–64.

    Article  Google Scholar 

  56. Modell J, Katholi C, Kumaramangalam S, Hudson E, Graham D. Unreliability of the infrared tympanic thermometer in clinical practice: a comparative study with oral mercury and oral electronic thermometers. South Med J. 1998;91(7):649–54.

    Article  Google Scholar 

  57. Rabinowitz RP, Cookson SY, Wasserman SS, et al. Effects of anatomic site, oral stimulation, and body position on estimates of body temperature. Arch Intern Med. 1996;156:777–80.

    Article  Google Scholar 

  58. Cranston WI, Gerbrandy J, Snell ES. Oral, rectal and oesophageal temperatures and some factors affecting them in man. J Physiol. 1954;126:347–58.

    Article  Google Scholar 

  59. Gerbrandy J, Snell ES, Cranston WI. Oral, rectal and oesophageal temperatures in relation to central temperature control in man. Clin Sci. 1954;13:615–24.

    Google Scholar 

  60. Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10.

    Article  Google Scholar 

  61. Robinson J, Charlton J, Seal R, Spady D, Joffres M. Oesophageal, rectal, axillary, tympanic and pulmonary artery temperatures during cardiac surgery. Can J Anaesth. 1998;45(4):317–23.

    Article  Google Scholar 

  62. Lee H, Inui D, Suh G, Kim J, Kwon J, Park J, et al. Association of body temperature and antipyretic treatments with mortality of critically ill patients with and without sepsis: multi-centered prospective observational study. Crit Care. 2012;16(R33):1–13.

    Google Scholar 

  63. Thompson H, Kagan S. Clinical management of fever by nurses: doing what works. J Adv Nurs. 2010;67(2):359–70.

    Article  Google Scholar 

  64. Lefrant J-Y, Muller L, Emmanuel de La Coussaye J, Benbabaali M, Lebris C, Zeitoun N, et al. Temperature measurement in intensive care patients: comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core method. Intensive Care Med. 2003;29:414–8.

    Article  Google Scholar 

  65. Jakobsson J, Nilsson A, Carlsson L. Core temperature measured in the auricular canal: comparison between four different tympanic thermometers. Acta Anaesthesiol Scand. 1992;36:819–24.

    Article  Google Scholar 

  66. Matsukawa T, Ozaki M, Hanagata K, Iwashita H, Miyaji T, Kumazawa T. A comparison of four infrared tympanic thermometers with tympanic membrane temperatures measured by thermocouples. Can J Anaesth. 1996;43(12):124–8.

    Article  Google Scholar 

  67. Shibasaki M, Kondo N, Tominaga H, Aoki K, Hasegawa E, Idota Y, et al. Continuous measurement of tympanic temperature with a new infrared method using an optical fiber. J Appl Physiol. 1998;85(3):921–6.

    Article  Google Scholar 

  68. Twerenbold R, Zehnder A, Breidthardt T, Reichlin T, Reiter M, Schaub N, et al. Limitations of infrared ear temperature measurement in clinical practice. Swiss Med Wkly [Internet]. 2010;20. https://doi.org/10.4414/smw.2010.13131.

  69. Chamberlain JM, Grandmer J, Rubinoff JL, Klein BL, Waisman Y, Huey M. Comparison of a tympanic thermometer to rectal thermometer and oral thermometers in a pediatric emergency department. Clin Pediatr. 1991;4(Suppl):124–9.

    Google Scholar 

  70. Doezema D, Lunt M, Tandberg D. Cerumen occlusion lowers infrared tympanic membrane temperature measurement. Acad Emerg Med. 1993;2(1):17–9.

    Article  Google Scholar 

  71. Robb P, Shahab R. Infrared transtympanic temperature measurement and otitis media with effusion. International Journal of Otorhinolaryngology. 2001;59:195–200.

    Article  Google Scholar 

  72. Duberg T, Lundholm C, Holmberg H. Örontermometer inte fullgott alternativ till rektaltermometer (Ear thermometer not satisfactory alternative to rektaltermometer). Läkartidningen In Swedish. 2007;104:1479–82.

    Google Scholar 

  73. Lee V, McKenzie N, Cathcart M. Ear and oral temperatures under usual practice conditions. Res Nurs Pract. 1999;1(1):8.

    Google Scholar 

  74. Stavem K, Saxholm H, Smith-Erichsen N. Accuracy of infrared ear thermometry in adult patients. Intensive Care Med. 1997;23:100–5.

    Article  Google Scholar 

  75. Childs C, Harrison R, Hodkinson C. Tympanic membrane temperature as a measure of core temperature. Arch Dis Child. 1999;80:262–6.

    Article  Google Scholar 

  76. Bridges E, Thomas K. Noninvasive measurement of body temperature in critically ill patients. Crit Care Nurse. 2009;29:94–7.

    Article  Google Scholar 

  77. Edling L, Carlsson R, Magnusson A, Holmberg H. Temperaturmätning i panna eller axill inte tillförlitlig: Metoder och termometrar jämförda med rektalmätning som referens (temperature measurement in forehead or axilla not reliable: methods and thermometers compared with rectal temperature as reference). Läkartidningen In Swedish. 2888;46-90(107):2010.

    Google Scholar 

  78. Liu C, Chang R, Chang W. Limitations of forehead infrared body temperature detection for fever screening for severe acute respiratory syndrome. Infect Control Hosp Epidemiol. 2004;25(12):1109–11.

    Article  Google Scholar 

  79. Suleman M, Doufas A, Akca O, Ducharme M, Sessler DI. Insufficiency in a new temporal-artery thermometer for adult and pediatric patients. Anesth Analg. 2002;95(1):67–71.

    Article  Google Scholar 

  80. Pompei M. Temperature assessment via the temporal artery; validation of a new method. Arterial heat balance thermometry at an exposed skin site: accuracy, comfort and convenience for patient and clinician. 1999.

    Google Scholar 

  81. Crawford D, Hicks B, Thompdon M. Which thermometer? Factors influencing best choice for intermittent clinical temperature assessment. J Med Eng Technol. 2006;30(4):199–211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grodzinsky, E., Sund Levander, M. (2020). Assessment and Evaluation of Body Temperature. In: Grodzinsky, E., Sund Levander, M. (eds) Understanding Fever and Body Temperature. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-21886-7_7

Download citation

Publish with us

Policies and ethics