Skip to main content

Benign Thyroid Nodule Laser Ablation

  • Chapter
  • First Online:
Image-guided Laser Ablation

Abstract

Surgery is the traditional treatment for thyroid nodules that keep growing over time and are associated with local symptoms. Yet, the direct and indirect expenses due to thyroidectomy and its long-term consequences, the risk of temporary or permanent complications, and the potential adverse influence on the quality of life are important concerns. Due to these considerations, a few image-guided minimally invasive procedures have been proposed for an office-based treatment of nodules that even if benign thyroid nodules are symptomatic or cause cosmetic concern. Among these techniques, US-guided laser thermal ablation (LA) is the most thoroughly assessed and is currently an easy accessible procedure in several thyroid specialized centers in Europe and Asia.

In solid nonfunctioning thyroid nodules, a laser ablation session results in a volume shrinkage that usually ranges from 60% to 80%, followed by the improvement of pressure symptoms. LA is effective for the management of small-size hyperfunctioning nodules that are associated with incomplete suppression of the surrounding thyroid tissue. So this treatment is not followed by irradiation or loss of thyroid function and is especially appealing in young patients. On the other hand, repeated LA treatments are needed to normalize thyroid function in large-size hyperfunctioning lesions. Thus, for these nodules, LA is indicated only as a combined treatment with radioiodine in order to attain a more rapid volume decrease. Notably, these treatments do not require general anesthesia and do not result in any damage to the skin and cervical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mortensen JD, Woolner LB, Bennett WA. Gross and microscopic findings in clinically normal thyroid glands. J Clin Endocrinol Metab. 1955;15(10):1270–80.

    Article  PubMed  CAS  Google Scholar 

  2. Carroll BA. Asymptomatic thyroid nodules: incidental sonographic detection. AJR Am J Roentgenol. 1982;138(3):499–501.

    Article  PubMed  CAS  Google Scholar 

  3. Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer. 1985;56(3):531–8.

    Article  PubMed  CAS  Google Scholar 

  4. Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med. 1997;126(3):226–31.

    Article  PubMed  CAS  Google Scholar 

  5. Wiest PW, Hartshorne MF, Inskip PD, Crooks LA, Vela BS, Telepak RJ, et al. Thyroid palpation versus high-resolution thyroid ultrasonography in the detection of nodules. J Ultrasound Med. 1998;17(8):487–96.

    Article  PubMed  CAS  Google Scholar 

  6. Brander AE, Viikinkoski VP, Nickels JI, Kivisaari LM. Importance of thyroid abnormalities detected at US screening: a 5-year follow-up. Radiology. 2000;215(3):801–6.

    Article  PubMed  CAS  Google Scholar 

  7. Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology. 2005;237(3):794–800.

    Article  PubMed  Google Scholar 

  8. Gharib H, Papini E. Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin N Am. 2007;36(3):707–35, vi.

    Article  CAS  Google Scholar 

  9. Durante C, Costante G, Lucisano G, Bruno R, Meringolo D, Paciaroni A, et al. The natural history of benign thyroid nodules. JAMA. 2015;313(9):926–35.

    Article  PubMed  CAS  Google Scholar 

  10. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214.

    Article  PubMed  Google Scholar 

  11. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. J Endocrinol Investig. 2010;33(5 Suppl):51–6.

    CAS  Google Scholar 

  12. Piccoli M, Mullineris B, Santi D, Gozzo D. Advances in robotic transaxillary thyroidectomy in Europe. Curr Surg Rep. 2017;5(8):17.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aidan P, Arora A, Lorincz B, Tolley N, Garas G. Robotic thyroid surgery: current perspectives and future considerations. ORL J Otorhinolaryngol Relat Spec. 2018;80(3–4):186–94.

    Article  PubMed  Google Scholar 

  14. Shan L, Liu J. A systemic review of transoral thyroidectomy. Surg Laparosc Endosc Percutan Tech. 2018;28(3):135–8.

    PubMed  Google Scholar 

  15. Materazzi G, Fregoli L, Papini P, Bakkar S, Vasquez MC, Miccoli P. Robot-assisted transaxillary thyroidectomy (RATT): a series appraisal of more than 250 cases from Europe. World J Surg. 2018;42(4):1018–23.

    Article  PubMed  Google Scholar 

  16. Bergenfelz A, Jansson S, Kristoffersson A, Martensson H, Reihner E, Wallin G, et al. Complications to thyroid surgery: results as reported in a database from a multicenter audit comprising 3,660 patients. Langenbeck’s Arch Surg. 2008;393(5):667–73.

    Article  CAS  Google Scholar 

  17. Watt T, Hegedus L, Groenvold M, Bjorner JB, Rasmussen AK, Bonnema SJ, et al. Validity and reliability of the novel thyroid-specific quality of life questionnaire, ThyPRO. Eur J Endocrinol. 2010;162(1):161–7.

    Article  PubMed  CAS  Google Scholar 

  18. Gharib H, Hegedus L, Pacella CM, Baek JH, Papini E. Clinical review:nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J Clin Endocrinol Metab. 2013;98(10):3949–57.

    Article  PubMed  CAS  Google Scholar 

  19. Bennedbaek FN, Karstrup S, Hegedus L. Percutaneous ethanol injection therapy in the treatment of thyroid and parathyroid diseases. Eur J Endocrinol. 1997;136(3):240–50.

    Article  PubMed  CAS  Google Scholar 

  20. Paschke R, Hegedus L, Alexander E, Valcavi R, Papini E, Gharib H. Thyroid nodule guidelines: agreement, disagreement and need for future research. Nat Rev Endocrinol. 2011;7(6):354–61.

    Article  PubMed  Google Scholar 

  21. Bown SG. Phototherapy in tumors. World J Surg. 1983;7(6):700–9.

    Article  CAS  PubMed  Google Scholar 

  22. Matthewson K, Coleridge-Smith P, O’Sullivan JP, Northfield TC, Bown SG. Biological effects of intrahepatic neodymium:yttrium-aluminum-garnet laser photocoagulation in rats. Gastroenterology. 1987;93(3):550–7.

    Article  CAS  PubMed  Google Scholar 

  23. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol. 1991;53(6):825–35.

    Article  PubMed  CAS  Google Scholar 

  24. Muller G, Roggan A. Laser-induced interstitial thermotherapy. Bellingham, WA: SPIE-The International Society for Optical Engineering; 1995.

    Google Scholar 

  25. Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38(1):79–100.

    Article  PubMed  Google Scholar 

  26. Ahrar K, Gowda A, Javadi S, Borne A, Fox M, McNichols R, et al. Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model. J Vasc Interv Radiol. 2010;21(4):555–61.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ahmed M, Brace CL, Lee FT Jr, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351–69.

    Article  PubMed  Google Scholar 

  28. Trembley H, Ryan T, Strohbehn J. Interstitial hyperthermia: physics, biology, and clinical aspects. Hyperthermia and oncology. Utrecht: VSP; 1992. p. 11–98.

    Google Scholar 

  29. Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992;72(3):531–58.

    Article  CAS  PubMed  Google Scholar 

  30. Heisterkamp J, van Hillegersberg R, Ijzermans JN. Critical temperature and heating time for coagulation damage: implications for interstitial laser coagulation (ILC) of tumors. Lasers Surg Med. 1999;25(3):257–62.

    Article  CAS  PubMed  Google Scholar 

  31. Larson TR, Bostwick DG, Corica A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissue in patients with benign prostatic hyperplasia. Urology. 1996;47(4):463–9.

    Article  PubMed  CAS  Google Scholar 

  32. Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996;3(3):212–8.

    Article  PubMed  CAS  Google Scholar 

  33. Zervas NT, Kuwayama A. Pathological characteristics of experimental thermal lesions. Comparison of induction heating and radiofrequency electrocoagulation. J Neurosurg. 1972;37(4):418–22.

    Article  PubMed  CAS  Google Scholar 

  34. Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer. 2000;88(11):2452–63.

    Article  PubMed  CAS  Google Scholar 

  35. Nikfarjam M, Muralidharan V, Christophi C. Mechanisms of focal heat destruction of liver tumors. J Surg Res. 2005;127(2):208–23.

    Article  PubMed  Google Scholar 

  36. Nikfarjam M, Malcontenti-Wilson C, Christophi C. Focal hyperthermia produces progressive tumor necrosis independent of the initial thermal effects. J Gastrointest Surg. 2005;9(3):410–7.

    Article  PubMed  Google Scholar 

  37. Mertyna P, Hines-Peralta A, Liu ZJ, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol. 2007;18(5):647–54.

    Article  PubMed  Google Scholar 

  38. Mertyna P, Dewhirst MW, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: the effect of distance and baseline temperature on thermal dose required for coagulation. Int J Hyperthermia. 2008;24(7):550–9.

    Article  PubMed  Google Scholar 

  39. Mertyna P, Goldberg W, Yang W, Goldberg SN. Thermal ablation a comparison of thermal dose required for radiofrequency-, microwave-, and laser-induced coagulation in an ex vivo bovine liver model. Acad Radiol. 2009;16(12):1539–48.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dachman A, Smith M, Burris J, VanDeMerwe W. Interstitial laser ablation in experimental models and in clinical use. Semin Interv Radiol. 1993;10:101–12.

    Article  Google Scholar 

  41. McGahan JP, Browning PD, Brock JM, Tesluk H. Hepatic ablation using radiofrequency electrocautery. Investig Radiol. 1990;25(3):267–70.

    Article  CAS  Google Scholar 

  42. Nolsoe CP, Torp-Pedersen S, Burcharth F, Horn T, Pedersen S, Christensen NE, et al. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology. 1993;187(2):333–7.

    Article  PubMed  CAS  Google Scholar 

  43. McGahan JP, Dodd GDI. Radiofrequency ablation of the liver: current status. AJR Am J Roentgenol. 2001;176:3–16.

    Article  Google Scholar 

  44. Dossing H, Bennedbaek FN, Karstrup S, Hegedus L. Benign solitary solid cold thyroid nodules: US-guided interstitial laser photocoagulation—initial experience. Radiology. 2002;225(1):53–7.

    Article  PubMed  Google Scholar 

  45. Cakir B, Topaloglu O, Gul K, Agac T, Aydin C, Dirikoc A, et al. Effects of percutaneous laser ablation treatment in benign solitary thyroid nodules on nodule volume, thyroglobulin and anti-thyroglobulin levels, and cytopathology of nodule in 1 yr follow-up. J Endocrinol Investig. 2006;29(10):876–84.

    Article  CAS  Google Scholar 

  46. Amabile G, Rotondi M, Pirali B, Dionisio R, Agozzino L, Lanza M, et al. Interstitial laser photocoagulation for benign thyroid nodules: time to treat large nodules. Lasers Surg Med. 2011;43(8):797–803.

    Article  PubMed  Google Scholar 

  47. Pacella CM, Bizzarri G, Spiezia S, Bianchini A, Guglielmi R, Crescenzi A, et al. Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology. 2004;232(1):272–80.

    Article  PubMed  Google Scholar 

  48. Gambelunghe G, Fatone C, Ranchelli A, Fanelli C, Lucidi P, Cavaliere A, et al. A randomized controlled trial to evaluate the efficacy of ultrasound-guided laser photocoagulation for treatment of benign thyroid nodules. J Endocrinol Investig. 2006;29(9):RC23–6.

    Article  CAS  Google Scholar 

  49. Dossing H, Bennedbaek FN, Hegedus L. Ultrasound-guided interstitial laser photocoagulation of an autonomous thyroid nodule: the introduction of a novel alternative. Thyroid. 2003;13(9):885–8.

    Article  PubMed  Google Scholar 

  50. Dossing H, Bennedbaek FN, Hegedus L. Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules—a randomised study. Eur J Endocrinol. 2005;152(3):341–5.

    Article  PubMed  CAS  Google Scholar 

  51. Dossing H, Bennedbaek FN, Hegedus L. Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules: one versus three treatments. Thyroid. 2006;16(8):763–8.

    Article  PubMed  Google Scholar 

  52. Dossing H, Bennedbaek FN, Hegedus L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol. 2011;165(1):123–8.

    Article  PubMed  CAS  Google Scholar 

  53. Dossing H, Bennedbaek FN, Hegedus L. Interstitial laser photocoagulation (ILP) of benign cystic thyroid nodules—a prospective randomized trial. J Clin Endocrinol Metab. 2013;98(7):E1213–7.

    Article  PubMed  CAS  Google Scholar 

  54. Nikfarjam M, Muralidharan V, Malcontenti-Wilson C, Christophi C. Progressive microvascular injury in liver and colorectal liver metastases following laser induced focal hyperthermia therapy. Lasers Surg Med. 2005;37(1):64–73.

    Article  PubMed  Google Scholar 

  55. Pacella CM, Rossi Z, Bizzarri G, Papini E, Marinozzi V, Paliotta D, et al. Ultrasound-guided percutaneous laser ablation of liver tissue in a rabbit model. Eur Radiol. 1993;3:26–32.

    Article  Google Scholar 

  56. PacellaCM, PapiniE, FabbriniR, BizzarriG, AnelliV, RinaldiG, et al.Ultrasound-guided percutaneous interstitial laser ablation of thyroid nodules. In: Feasibility study: E.C.R.’95—European Congress Radiology, Vienna, 5–10 Mar 1995.

    Google Scholar 

  57. PacellaCM, PapiniE, BizzarriG, AnelliV, CrescenziA, PacellaS.Ultrasound-guided (US) percutaneous interstitial laser photo-coagulation of thyroid tissue. Feasibility study (abstract). In: RSNA, editor. 84th Scientific assembly and annual meeting, Chicago, IL, 29Nov–4 Dec 1998.

    Google Scholar 

  58. Pacella CM, Bizzarri G, Guglielmi R, Anelli V, Bianchini A, Crescenzi A, et al. Thyroid tissue: US-guided percutaneous interstitial laser ablation—a feasibility study. Radiology. 2000;217(3):673–7.

    Article  PubMed  CAS  Google Scholar 

  59. Piana S, Riganti F, Froio E, Andrioli M, Pacella CM, Valcavi R. Pathological findings of thyroid nodules after percutaneous laser ablation: a series of 22 cases with cyto-histological correlation. Endocr Pathol. 2012;23(2):94–100.

    Article  PubMed  Google Scholar 

  60. Cakir B, Ugras NS, Gul K, Ersoy R, Korukluoglu B. Initial report of the results of percutaneous laser ablation of benign cold thyroid nodules: evaluation of histopathological changes after 2 years. Endocr Pathol. 2009;20(3):170–6.

    Article  PubMed  Google Scholar 

  61. Rotondi M, Amabile G, Leporati P, Di Filippo B, Chiovato L. Repeated laser thermal ablation of a large functioning thyroid nodule restores euthyroidism and ameliorates constrictive symptoms. J Clin Endocrinol Metab. 2009;94(2):382–3.

    Article  PubMed  CAS  Google Scholar 

  62. Spiezia S, Vitale G, Di Somma C, Pio Assanti A, Ciccarelli A, Lombardi G, et al. Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter. Thyroid. 2003;13(10):941–7.

    Article  PubMed  Google Scholar 

  63. Valcavi R, Bertani A, Pesenti M, Al Jandali Rifa’Y LR, Frasoldati A, Formisano D, et al. Laser and radiofrequency ablation procedures. In: Baskin HJ, Duick DS, Levine RA, editors. Thyroid ultrasound and ultrasound guided FNA biopsy. 2nd ed. New York: Springer; 2008. p. 191–218.

    Chapter  Google Scholar 

  64. Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid. 2010;20(11):1253–61.

    Article  PubMed  CAS  Google Scholar 

  65. Papini E, Guglielmi R, Bizzarri G, Graziano F, Bianchini A, Brufani C, et al. Treatment of benign cold thyroid nodules: a randomized clinical trial of percutaneous laser ablation versus levothyroxine therapy or follow-up. Thyroid. 2007;17(3):229–35.

    Article  PubMed  CAS  Google Scholar 

  66. Papini E, Rago T, Gambelunghe G, Valcavi R, Bizzarri G, Vitti P, et al. Long-term efficacy of ultrasound-guided laser ablation for benign solid thyroid nodules. Results of a three-year multicenter prospective randomized trial. J Clin Endocrinol Metab. 2014;99(10):3653–9.

    Article  PubMed  CAS  Google Scholar 

  67. Achille G, Zizzi S, Di Stasio E, Grammatica A, Grammatica L. Ultrasound-guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: our experience in 45 patients. Head Neck. 2016;38:677–82.

    Article  PubMed  Google Scholar 

  68. Papini E, Guglielmi R, Bizzarri G, Pacella CM. Ultrasound-guided laser thermal ablation for treatment of benign thyroid nodules. Endocr Pract. 2004;10(3):276–83.

    Article  PubMed  Google Scholar 

  69. Gambelunghe G, Bini V, Monacelli M, Avenia N, D’Ajello M, Colella R, et al. The administration of anesthetic in the thyroid pericapsular region increases the possibility of side effects during percutaneous laser photocoagulation of thyroid nodules. Lasers Surg Med. 2013;45(1):34–7.

    Article  PubMed  Google Scholar 

  70. Pacella CM, Mauri G, Achille G, Barbaro D, Bizzarri G, De Feo P, et al. Outcomes and risk factors for complications of laser ablation for thyroid nodules. A multicenter study on 1531 patients. J Clin Endocrinol Metab. 2015;100(10):3903–10.

    Article  PubMed  CAS  Google Scholar 

  71. Negro R, Salem TM, Greco G. Laser ablation is more effective for spongiform than solid thyroid nodules. A 4-year retrospective follow-up study. Int J Hyperthrmia. 2016;32:822–8. https://doi.org/10.1080/02656736.2016.1212279.

    Article  Google Scholar 

  72. Mauri G, Cova L, Monaco CG, Sconfienza LM, Benedini S, Ambrogi F, Milani V, Baroli A, Ierace T, Corbetta S, Solbiati L. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int J Hyperthermia. 2017;33:295–9. https://doi.org/10.1080/02656736.2016.1244707.

    Article  PubMed  CAS  Google Scholar 

  73. Pacella CM, Mauri G, Cesareo R, Paqualini V, De Feo P, Gambelunghe G, Raggiunti B, Tina D, Cianni R, Deandrea M, Limone P, Misischi I, Mormile A, Giusti M, Oddo S, Achille G, Di Stasio E, Papini E. A comparison of laser with radiofrequency ablation for the treatment of benign thyroid nodules: a propensity score matching analysis. Int J Hyperthermia. 2017;33:911–9. https://doi.org/10.1080/02656736.2017.1332395.

    Article  PubMed  Google Scholar 

  74. Oddo S, Felix E, Mussap M, Giusti M. Quality of life in patients treated with percutaneous laser ablation for non-functioning benign thyroid nodules: a prospective single-center study. Korean J Radiol. 2018;19(1):175–84.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cakir B, Gul K, Ugras S, Ersoy R, Topaloglu O, Agac T, et al. Percutaneous laser ablation of an autonomous thyroid nodule: effects on nodule size and histopathology of the nodule 2 years after the procedure. Thyroid. 2008;18(7):803–5.

    Article  PubMed  Google Scholar 

  76. Barbaro D, Orsini P, Lapi P, Pasquini C, Tuco A, Righini A, et al. Percutaneous laser ablation in the treatment of toxic and pretoxic nodular goiter. Endocr Pract. 2007;13(1):30–6.

    Article  PubMed  Google Scholar 

  77. Dossing H, Bennedbaek FN, Bonnema SJ, Grupe P, Hegedus L. Randomized prospective study comparing a single radioiodine dose and a single laser therapy session in autonomously functioning thyroid nodules. Eur J Endocrinol. 2007;157(1):95–100.

    Article  PubMed  CAS  Google Scholar 

  78. Gambelunghe G, Stefanetti E, Colella R, Monacelli M, Avenia N, De Feo P. A single session of laser ablation for toxic thyroid nodules: three-year follow-up results. Int J Hyperthermia. 2018;34:1–5.

    Article  Google Scholar 

  79. Pacella CM, Mauri G. Is there a role for minimally invasive thermal ablations in the treatment of autonomously functioning thyroid nodules? Int J Hyperthermia. 2018;34:1–3.

    Article  Google Scholar 

  80. Chianelli M, Bizzarri G, Todino V, Misischi I, Bianchini A, Graziano F, et al. Laser ablation and 131-Iodine: a 24-month pilot study of combined treatment for large toxic nodular goitre. J Clin Endocrinol Metab. 2014;99:E1283–6.

    Article  PubMed  CAS  Google Scholar 

  81. Guglielmi R, Pacella CM, Bianchini A, Bizzarri G, Rinaldi R, Graziano FM, et al. Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy. Thyroid. 2004;14(2):125–31.

    Article  PubMed  CAS  Google Scholar 

  82. Cakir B, Gul K, Ersoy R, Topaloglu O, Korukluoglu B. Subcapsular hematoma complication during percutaneous laser ablation to a hypoactive benign solitary thyroid nodule. Thyroid. 2008;18(8):917–8.

    Article  PubMed  Google Scholar 

  83. Di Rienzo G, Surrente C, Lopez C, Quercia R. Tracheal laceration after laser ablation of nodular goitre. Interact Cardiovasc Thorac Surg. 2010;14(1):115–6.

    Article  Google Scholar 

  84. Pacella CM. Image-guided thermal ablation of benign thyroid nodules. J Ultrasound. 2017;20(4):347–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papini, E., Guglielmi, R., Persichetti, A., Pacella, C.M. (2020). Benign Thyroid Nodule Laser Ablation. In: Pacella, C., Jiang, T., Mauri, G. (eds) Image-guided Laser Ablation. Springer, Cham. https://doi.org/10.1007/978-3-030-21748-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21748-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21747-1

  • Online ISBN: 978-3-030-21748-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics