Skip to main content

Acids with Chiral Molecules as Essential Organic Compounds of Biogenic–Abiogenic Systems

  • Conference paper
  • First Online:
Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature

Abstract

The present review generalizes results of a comprehensive experimental study (by means of PXRD, SCXRD, TRPXRD, DSC, IR) of six chiral systems. These are enantiomeric systems of a single substance: (1) the system with a eutectic point (S- and R-E3ClMA), (2) the system forming a binary compound (l- and d-phenylglycine), and (3) the system forming equimolar and non-equimolar discrete compounds (S- and R-malic acid). Also these are diastereomeric systems and a system composed of enantiomers of different substances: (4) the diastereomeric system with continuous solid solutions (l- and l-allo-threonine), and (5) the diastereomeric system with a eutectic point (d- and l-allo-threonine), and (6) the system of enantiomers of different substances (l-valine and l-isoleucine) which contains a non-equimolar discrete compound. Crystal structures of discrete equimolar and non-equimolar homomolecular and heteromolecular compounds found in the systems under discussion are described. Also, polymorph diversity and the limits of solid solutions in such binary systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The designations represent the relative (l and d) and absolute (S and R) configurations of the levorotatory and dextrorotatory enantiomers, respectively.

  2. 2.

    A chiral center can take place not only at a stereogenic atom, but also in a “space”, for example, in the molecule center of gravity. Not only a chiral center, but also a chiral axis, and a chiral plane can be a source of chirality.

  3. 3.

    The terms “non-equimolar discrete compounds” and “homomolecular” and “heteromolecular discrete compounds” related to chiral compounds were firstly introduced in the papers (Isakov et al. 2015) and (Kotelnikova et al. 2017), respectively.

References

  • Aakeröy CB, Cooke TI, Nieuwenhuyzen M (1996) The crystal structure of the molecular cocrystal L-malic acid L-tartaric acid (1/1). Supramol Chem 7(2):153–156

    Article  Google Scholar 

  • Andersson M, Fredga A, Jerslev B (1966) Anomalous racemates of malic acid. Acta Chem Scand 20:1060–1063

    Article  Google Scholar 

  • Anischenko LA, Shanina SN (2010) Amino acids in the depths: the results of the study and the prospects for the study. Bull Inst Geol, Komi SC UB RAS 9:34–35 (in Russian)

    Google Scholar 

  • Bada JL, Schroeder RA (1975) Amino acid racemization reactions and their geochemical implications. Naturwissenschaften 62(2):71–79

    Article  Google Scholar 

  • Bergmann M, Lissitzin M (1930) Die überzähligen Stereoisomeren der γ-Amino-β-oxy-buttersäure. Ber Dtsch Chem Ges 63(2):310–313

    Article  Google Scholar 

  • Binev D, Taratin N, Kotelnikova E, Seidel-Morgenstern A, Lorenz H (2014) Solubility equilibria and crystallographic characterization of the L-threonine/L-allo-threonine system. Part 1: solubility equilibria in the threonine diastereomeric system. Cryst Growth Des 14:367–373

    Article  Google Scholar 

  • Bredikhin AA, Bredikhina ZA, Zakharychev DV, Samigullina AI, Gubaidullin AT (2015) 4-benzoylamino-3-hydroxybutyric acid, historically first “Anomalous Racemate”: reinvestigation. Cryst Growth Des 15(3):1362–1373

    Article  Google Scholar 

  • CCDC files: 1903255 (L-phenylglycine), 1904158 (compound I3L), 1903257 (compound V3L)

    Google Scholar 

  • CSD files (identifiers): FIVGEW (DL-phenilglycine), COFRUK10 (S-malic acid), DLMALC11 (RSI-malic acid), DLMALC (RSII-malic acid), LVALIN01 (L-valine) and LISLEU02 (L-isoleucine)

    Google Scholar 

  • Dalhus B, Görbitz CH (1999) Molecular aggregation in crystalline 1:1 complexes of hydrophobic D- and L-amino acids. I. The L-isoleucine series. Acta Cryst B55(3):424–431

    Article  Google Scholar 

  • De Torres T, Ortiz JE, Arribas I, Delgado A, Julia R, Martin-Rubi JA (2010) Geochemistry of Persististrombus latus Gmelin from the Pleistocene Iberian Mediterranean realm. Lethaia 43:149–163

    Article  Google Scholar 

  • Drozdova TV (1977) Geochemistry of amino acids. Nauka, Moscow (in Russian)

    Google Scholar 

  • Eddleston MD, Arhangelskis M, Fričšić T, Jones W (2012) Solid state grinding as a tool to aid enantiomeric resolution by cocrystallization. Chem Commun 48:11340–11342

    Article  Google Scholar 

  • Fredga A (1940) Über den konfigurativen Zusammenhang zwischen optisch aktiver Milchsäure und Thiomilchsäure. Arkiv Kemi Mineral Geol 14B(12):1–10

    Google Scholar 

  • Fredga A (1944) Proceedings of the Theodor Svedberg. Uppsala and Stockholm, Sweden, p 261

    Google Scholar 

  • Galan K, Eicke MJ, Elsner MP, Lorenz H, Seidel-Morgenstern A (2015) Continuous preferential crystallization of chiral molecules in single and coupled mixed-suspension mixed-product-removal crystallizers. Cryst Growth Des 15(4):1808–1818

    Article  Google Scholar 

  • Gubaidullin AT, Samigullina AI, Bredikhina ZA, Bredikhin AA (2014) Crystal structure of chiral ortho-alkyl phenyl ethers of glycerol: true racemic compound, normal, false and anomalous conglomerates within the single five-membered family. CrystEngComm 16:6716–6729

    Article  Google Scholar 

  • Isakov AI, Kotelnikova EN, Kryuchkova LY, Lorenz H (2013a) Effect of crystallization conditions on polymorphic diversity of malic acid RS-racemate. Trans Tianjin Univ 19(2):86–91

    Article  Google Scholar 

  • Isakov AI, Kotelnikova EN, Kryuchkova LY, Lorenz H (2013b) Isomorphism and polymorphism in the system of malic acid enantiomers on the basis of X-ray and high-temperature X-ray diffractometry. In: Qu H, Rantanen J, Malwade C (eds) Proceedings of the 20th international workshop on industrial crystallization (BIWIC-2013), vol 20. Odense, Denmark, pp 395–402

    Google Scholar 

  • Isakov AI, Kotelnikova EN, Lorenz H (2015) Non-equimolar discrete phases formed in the system of malic acid enantiomers. Chem Eng Technol 38(6):1047–1052

    Article  Google Scholar 

  • Isakov AI, Kotelnikova EN, Bocharov SN, Zolotarev AA Jr, Lorenz H (2016a) Thermal deformations of the crystal structures of L-valine, L-isoleucine and discrete compound V2I. In: Lorenz H, Buchholz H (eds) Proceedings of the 23rd international workshop on industrial crystallization (BIWIC-2016), vol 23. Cuvillier Verlag, Göttingen, pp 7–12

    Google Scholar 

  • Isakov AI, Kotelnikova EN, Muenzberg S, Bocharov SN, Lorenz H (2016b) Solid phases in the system L-valine–L-isoleucine. Cryst Growth Des 16:2653–2661

    Article  Google Scholar 

  • Isakov AI, Kotelnikova EN, Lorenz H (2018) Limits of solid solutions and crystal morphology in the system of L-valine–L-leucine enantiomers. In: Proceedings of the VI international symposium on “Biogenic – abiogenic interactions in natural and anthropogenic systems”. St. Petersburg, Russia, pp 121–123

    Google Scholar 

  • Jacques J, Collet A, Wilen SH (1981) Enantiomers, racemates and resolutions, 1rd edn. Wiley, New York

    Google Scholar 

  • Janczak J, Zobel D, Luger P (1997) L-threonine at 12 K. Acta Cryst C53:1901–1904

    Google Scholar 

  • Kaemmerer H (2012) New concepts for enantioselective crystallization. Shaker Verlag, Aachen

    Google Scholar 

  • Kotelnikova EN, Isakov AI, Lorenz H (2017) Non-equimolar discrete compounds in binary chiral systems of organic substances (highlight). CrystEngComm 19(14):1851–1869

    Article  Google Scholar 

  • Kotelnikova EN, Isakov AI, Lorenz H (2018) Thermal deformations of crystal structures formed in the systems of malic acid enantiomers and L-valine–L-isoleucine enantiomers. CrystEngComm 20(18):2562–2572

    Article  Google Scholar 

  • Koolman HC, Rousseau RW (1996) Effects of isomorphic compounds on the purity and morphology of L-isoleucine crystals. AIChE J 42(1):147–153

    Article  Google Scholar 

  • Kryuchkova LY, Kotelnikova EN, Lorenz H, Zolotarev AA Jr, Bocharov SN (2018a) Solid phases in the chiral phenylglycine system according to PXRD and SCXRD data. In: Cartigny Y, Couvrat N (eds) Proceedings of the 25th international workshop on industrial crystallization (BIWIC-2018), vol 25. Rouen, France, pp 226–231

    Google Scholar 

  • Kryuchkova LY, Kotelnikova EN, Zolotarev AA Jr, Lorenz H (2018b) Limits of solid solutions in the L-leucine—isoleucine system according to PXRD and SCXRD data. In: Cartigny Y, Couvrat N (eds) Proceedings of the 25th international workshop on industrial crystallization (BIWIC-2018), vol 25. Rouen, France, p 225

    Google Scholar 

  • Kurosawa I, Teja AS, Rousseau RW (2005) Solubility measurements in the l-Isoleucine + l-Valine + Water System at 298 K. Eng Chem Res 44:3284–3288

    Article  Google Scholar 

  • Liu Z-S, Xu Y-L, Wang H, Yan C, Gao R-Y (2004) Chiral separation of binaphthol enantiomers on molecularly imprinted polymer monolith by capillary electrochromatography. Anal Sci 20:673–678

    Article  Google Scholar 

  • Lin G-Q, Zhang J-G, Cheng J-F (2011) Overview of chirality and chiral drugs. In: Lin G-Q, You Q-D, Cheng J-F (eds) Chiral drugs: chemistry and biological action. Wiley, New York, Hoboken (NJ)

    Chapter  Google Scholar 

  • Lorenz H, Seidel-Morgenstern A (2014) Processes to separate enantiomers. Angew Chem Int Ed 53:1218–1250

    Article  Google Scholar 

  • Murakami H (2007) From racemates to single enantiomers–chiral synthetic drugs over the last 20 years. Top Curr Chem 269:273–299

    Article  Google Scholar 

  • Nogradi M (1981) Stereochemistry. Basic concepts and applications. Pergamon press, Oxford

    Google Scholar 

  • Oches EA, McCoy WD (2001) Historical developments and recent advances in amino acid geochronology applied to loess research: examples from North America, Europe, and China. Earth Sci Rev 54(1–3):173–192

    Article  Google Scholar 

  • Robins J, Jones M, Matisoo-Smith E (2001) Amino acid racemization dating in New Zealand: an overview and bibliography. Auckland University, Auckland

    Google Scholar 

  • Sapoundjiev D, Lorenz H, Seidel-Morgenstern A (2006) Solubility of chiral threonine species in water/ethanol mixtures. J Chem Eng Data 51(5):1526–1566

    Article  Google Scholar 

  • Shoemaker DP, Donohue J, Schomaker V, Corey RB (1950) The crystal structure of L threonine. J Am Chem Soc 72:2328–2349

    Article  Google Scholar 

  • Swaminathan P, Srinivasan R (1975) Studies in molecular structure, symmetry and conformation. VIII. Crystal and molecular structure of L-allothreonine. Acta Cryst B31:217–221

    Article  Google Scholar 

  • Taratin NV, Lorenz H, Kotelnikova EN, Glikin AE, Galland A, Dupray V, Coquerel G, Seidel-Morgenstern A (2012) Mixed crystals in chiral organic systems: a case study on (R)- and (S)-ethanolammonium 3-chloromandelate. Cryst Growth Des 12:5882–5888

    Article  Google Scholar 

  • Taratin NV, Binev D, Lorenz H, Seidel-Morgenstern A, Kotelnikova EN (2013) Characterization and limits of solid solutions in binary systems of threonine diastereomers according to X-ray diffraction data. In: Bekker TB, Litasov KD, Sobolev NV (eds) Proceedings of the III international conference on crystallogenesis and mineralogy. Novosibirsk, Russia, pp 341-I–341-II

    Google Scholar 

  • Taratin N, Lorenz H, Binev D, Seidel-Morgenstern A, Kotelnikova E (2015) Solubility equilibria and crystallographic characterization of the L-threonine/L-allo-threonine system. Part 2: crystallographic characterization of solid solutions in the threonine diastereomeric system. Cryst Growth Des 15:137–144

    Article  Google Scholar 

  • Torii K, Iitaka Y (1970) The crystal structure of L-valine. Acta Cryst B26:1317–1326

    Article  Google Scholar 

  • Torii K, Iitaka Y (1971) The crystal structure of L-isoleucine. Acta Cryst B27:2237–2246

    Article  Google Scholar 

  • Xie R, Chu L-Y, Deng J-G (2008) Membranes and membrane processes for chiral resolution. Chem Soc Rev 37:1243–1263

    Article  Google Scholar 

Download references

Acknowledgements

The investigations were performed using equipment of the Resource Centre for X-ray Diffraction Studies of Saint Petersburg State University and equipment of the MPI Magdeburg PCF lab. The authors thank Dr. N. Taratin, Dr. D. Binev, Dr. S. Muenzberg, Dr. M. G. Krzhizhanovskaya, Prof. A. Seidel-Morgenstern and Prof. G. Coquerel for their contributions over the years. The authors appreciate the financial support provided by the Russian Foundation for Basic Research (Projects: 18-35-00183 mol_a and 16-29-11-727 ofi_m).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Kotelnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotelnikova, E.N., Isakov, A.I., Kryuchkova, L.Y., Zolotarev, A.A., Bocharov, S.N., Lorenz, H. (2020). Acids with Chiral Molecules as Essential Organic Compounds of Biogenic–Abiogenic Systems. In: Frank-Kamenetskaya, O., Vlasov, D., Panova, E., Lessovaia, S. (eds) Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-21614-6_37

Download citation

Publish with us

Policies and ethics