Skip to main content
Log in

The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This review covers the phenomenon of the self-disproportionation of enantiomers (SDE) of amino acids and their derivatives in all its guises from phase transformations (recrystallization, sublimation, and distillation), to the application of force fields, through to chromatography including HPLC, MPLC, gravity-driven column chromatography, and SEC. The relevance of the SDE phenomenon to amino acid research and to marketed pharmaceuticals is clear given the potential for alteration of the enantiomeric excess of a portion of a scalemic sample. In addition, the possible contribution of the SDE phenomenon to the genesis of prebiotic homochirality is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abás S, Arróniz C, Molins E, Escolano C (2018) Access to the enantiopure pyrrolobenzodiazepine (PBD) dilactam nucleus via self-disproportionation of enantiomers. Tetrahedron 74:867–871

    Article  CAS  Google Scholar 

  • Aceña JL, Sorochinsky AE, Katagiri T, Soloshonok VA (2013) Unconventional preparation of racemic crystals of isopropyl 3,3,3-trifluoro-2-hydroxypropanoate and their unusual crystallographic structure: the ultimate preference for homochiral intermolecular interactions. Chem Commun 49:373–375

    Article  Google Scholar 

  • Aceña JL, Sorochinsky AE, Soloshonok VA (2014) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations. Amino Acids 46:2047–2073

    Article  CAS  PubMed  Google Scholar 

  • Albrecht M, Soloshonok VA, Schrader L, Yasumoto M, Suhm MA (2010) Chirality-dependent sublimation of α-(trifluoromethyl)-lactic acid: relative vapor pressures of racemic, eutectic, and enantiomerically pure forms, and vibrational spectroscopy of isolated (S, S) and (S, R) dimers. J Fluor Chem 131:495–504

    Article  CAS  Google Scholar 

  • Baciocchi R, Zenoni G, Mazzotti M, Morbidelli M (2002) Separation of binaphthol enantiomers through achiral chromatography. J Chromatogr A 944:225–240

    Article  CAS  PubMed  Google Scholar 

  • Baciocchi R, Mazzotti M, Morbidelli M (2004) General model for the achiral chromatography of enantiomers forming dimers: application to binaphthol. J Chromatogr A 1024:15–20

    Article  CAS  PubMed  Google Scholar 

  • Bada JL, Cronin JR, Ho M-S, Kvenvolden KA, Lawless JG, Miller SL, Oro J, Steinberg S (1983) On the reported optical activity of amino acids in the Murchison meteorite. Nature 301:494–496

    Article  CAS  Google Scholar 

  • Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Ménard F, Tamura M (1998) Circular polarization in star formation regions: implications for biomolecular homochirality. Science 281:672–674

    Article  PubMed  Google Scholar 

  • Basiuk VA, Gromovoy TY, Chuiko AA, Soloshonok VA, Kukhar VP (1992) A novel approach to the synthesis of symmetric optically active 2,5-dioxopiperazines. Synthesis 449–451

  • Bellec A, Guillemin J-C (2010) A simple explanation of the enhancement or depletion of the enantiomeric excess in the partial sublimation of enantiomerically enriched amino acids. Chem Commun 46:1482–1484

    Article  CAS  Google Scholar 

  • Blackmond DG, Klussmann M (2007) Spoilt for choice: assessing phase behavior models for the evolution of homochirality. Chem Commun. https://doi.org/10.1039/B709314B

    Article  Google Scholar 

  • Blaskovich MAT (2016) Unusual amino acids in medicinal chemistry. J Med Chem 59:10807–10836

    Article  CAS  PubMed  Google Scholar 

  • Bonner WA, Rubenstein E (1987) Supernovae, neutron stars and biomolecular chirality. BioSystems 20:99–111

    Article  CAS  PubMed  Google Scholar 

  • Breslow R, Levine MS (2006) Amplification of enantiomeric concentrations under credible prebiotic conditions. Proc Natl Acad Sci USA 103:12979–12980

    Article  CAS  PubMed  Google Scholar 

  • Charles R, Gil-Av E (1984) Self-amplification of optical activity by chromatography on an achiral adsorbent. J Chromatogr 298:516–520

    Article  CAS  Google Scholar 

  • Coquerel G (2000) Review on the heterogeneous equilibria between condensed phases in binary systems of enantiomers. Enantiomer 5:481–498

    CAS  PubMed  Google Scholar 

  • Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    Article  CAS  PubMed  Google Scholar 

  • Darquié B, Stoeffler C, Shelkovnikov A, Daussy C, Amy-Klein A, Chardonnet C, Zrig S, Guy L, Crassous J, Soulard P, Asselin P, Huet TR, Schwerdtfeger P, Bast R, Saue T (2010) Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22:870–884

    Article  CAS  PubMed  Google Scholar 

  • Diter P, Taudien S, Samuel O, Kagan HB (1994) Enantiomeric enrichment of sulfoxides by preparative flash chromatography on an achiral phase. J Org Chem 59:370–373

    Article  CAS  Google Scholar 

  • Dobashi A, Motoyama Y, Kinoshita K, Hara S, Fukasaku N (1987) Self-induced chiral recognition in the association of enantiomeric mixtures on silica gel chromatography. Anal Chem 59:2209–2211

    Article  CAS  Google Scholar 

  • Doucet H, Fernandez E, Layzell TP, Brown JM (1999) The scope of catalytic asymmetric hydroboration/oxidation with rhodium complexes of 1,1′-(2-diarylphosphino-1-naphthyl)isoquinolines. Chem Eur J 5:1320–1330

    Article  CAS  Google Scholar 

  • Drabowicz J, Jasiak A, Wzorek A, Sato A, Soloshonok VA (2017) Self-disproportionation of enantiomers (SDE) of chiral sulfoxides, amides and thioamides via achiral chromatography. Arkivoc 2017:557–578

    Article  Google Scholar 

  • Engel MH, Nagy B (1982) Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296:837–840

    Article  CAS  Google Scholar 

  • Fales HM, Wright GJ (1977) Detection of chirality with the chemical ionization mass spectrometer. “Meso” ions in the gas phase. J Am Chem Soc 99:2339–2340

    Article  CAS  Google Scholar 

  • Farina M (1987) The vapour pressure of enantiomers and of their mixtures. J Chem Soc Chem Commun. https://doi.org/10.1039/C39870001121

    Article  Google Scholar 

  • Farina M, Di Silvestro G (1988) Solid–liquid–vapor equilibria of chiral compounds. Mol Cryst Liq Cryst Incorp Nonlinear Opt 161:177–198

    Article  Google Scholar 

  • Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed 28:3418–3438

    Article  Google Scholar 

  • Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem Commun. https://doi.org/10.1039/B702882B

    Article  Google Scholar 

  • Garin DL, Cooke Greco DJ, Kelley L (1977) Enhancement of optical activity by fractional sublimation. An alternative to fractional crystallization and a warning. J Org Chem 42:1249–1251

    Article  CAS  Google Scholar 

  • Gavezzotti A (1994) Are crystal structures predictable? Acc Chem Res 27:309–314

    Article  CAS  Google Scholar 

  • Gil-Av E, Schurig V (1994) Resolution of non-racemic mixtures in achiral chromatographic systems: a model for the enantioselective effects observed. J Chromatogr A 666:519–525

    Article  CAS  Google Scholar 

  • Goto M, Tateishi K, Ebine K, Soloshonok VA, Roussel Ch, Kitagawa O (2016) Chiral additive induced self-disproportionation of enantiomers under MPLC conditions: preparation of enantiomerically pure samples of 1-(aryl)ethylamines from racemates. Tetrahedron Asymmetry 27:317–321

    Article  CAS  Google Scholar 

  • Guetté JP, Boucherot D, Horeau A (1973) Interactions diastereoisomeres d’enantiomeres en phase liquide-II: Peut-on séparer les antipodes d’un composé chiral par distillation? Tetrahedron Lett 14:465–468

    Article  Google Scholar 

  • Han J, Nelson DJ, Sorochinsky AE, Soloshonok VA (2011) Self-disproportionation of enantiomers via sublimation; new and truly green dimension in optical purification. Curr Org Synth 8:310–317

    Article  CAS  Google Scholar 

  • Han J, Kitagawa O, Wzorek A, Klika KD, Soloshonok VA (2018a) The self-disproportionation of enantiomers (SDE): a menace or an opportunity? Chem Sci 9:1718–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A (2018b) Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 47:1307–1350

    Article  CAS  PubMed  Google Scholar 

  • Han J, Wzorek A, Klika KD, Soloshonok VA (2018c) Fluorine-containing pharmaceuticals and the phenomenon of the self-disproportionation of enantiomers, Ch. 10. In: Postigo A (ed) Late-stage fluorination of bioactive molecules and biologically-relevant substrates. Elsevier, Amsterdam

    Google Scholar 

  • Han J, Wzorek A, Klika KD, Soloshonok VA (2019) The role of fluorine in the self-disproportionation of enantiomers (SDE) phenomenon of scalemic samples of fluoroorganics. In: Ojima I (ed) Frontiers of organofluorine chemistry. World Scientific Publishing Co., London

    Google Scholar 

  • Hayashi Y, Matsuzawa M, Yamaguchi J, Yonehara S, Matsumoto Y, Shoji M, Hashizume D, Koshino H (2006) Large nonlinear effect observed in the enantiomeric excess of proline in solution and that in the solid state. Angew Chem Int Ed 45:4393–4397

    Google Scholar 

  • Henning T, Semenov D (2013) Chemistry in protoplanetary disks. Chem Rev 113:9016–9042

    Article  CAS  PubMed  Google Scholar 

  • Henninot A, Collins JC, Nuss JM (2018) The current state of peptide drug discovery: back to the future? J Med Chem 61:1382–1414

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Terada S, Yoshida H, Ebine K, Hirata T, Kitagawa O (2016) Catalytic enantioselective synthesis of N–C axially chiral mebroqualone and its derivatives through reductive asymmetric desymmetrization. Org Lett 18:5700–5703

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Takahashi I, Suzuki Y, Yoshida H, Hasegawa H, Kitagawa O (2016) Catalytic enantioselective synthesis of N–C axially chiral phenanthridin-6-one derivatives. J Org Chem 81:318–323

    Article  CAS  PubMed  Google Scholar 

  • Hodgson DRW, Sanderson JM (2004) The synthesis of peptides and proteins containing non-natural amino acids. Chem Soc Rev 33:422–430

    Article  CAS  PubMed  Google Scholar 

  • Horeau A, Guetté JP (1974) Interactions diastereoisomeres d’antipodes en phase liquid. Tetrahedron 30:1923–1931

    Article  CAS  Google Scholar 

  • Hosaka T, Imai T, Wzorek A, Marcinkowska M, Kolbus A, Kitagawa O, Soloshonok VA, Klika KD (2019) The self-disproportionation of enantiomers (SDE) of α-amino acid derivatives; facets of steric and electronic properties. Amino Acids. https://doi.org/10.1007/s00726-018-2664-x

    Article  PubMed  Google Scholar 

  • Huang J, Yu L (2006) Effect of molecular chirality on racemate stability: α-amino acids with nonpolar R groups. J Am Chem Soc 128:1873–1878

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Aida T (2002) Homochiral supramolecular polymerization of an “S”-shaped chiral monomer: translation of optical purity into molecular weight distribution. J Am Chem Soc 124:14017–14019

    Article  CAS  PubMed  Google Scholar 

  • Jacques J, Collet A, Wilen SH (1981) Enantiomers, racemates, and resolutions. Wiley, New York

    Google Scholar 

  • Jung M, Schurig V (1992) Computer simulation of three scenarios for the separation of non-racemic mixtures by chromatography on achiral stationary phases. J Chromatogr 605:161–166

    Article  CAS  Google Scholar 

  • Katagiri T, Yoda C, Furuhashi K, Ueki K, Kubota T (1996) Separation of an enantiomorph and its racemate by distillation: strong chiral recognizing ability of trifluorolactates. Chem Lett 25:115–116

    Article  Google Scholar 

  • Katagiri T, Takahashi S, Tsuboi A, Suzaki M, Uneyama K (2010) Discrimination of enantiomeric excess of optically active trifluorolactate by distillation: evidence for a multi-center hydrogen bonding network in the liquid state. J Fluor Chem 131:517–520

    Article  CAS  Google Scholar 

  • Klika KD (2012) Suggested new terms for describing chiral states and the state-dependent behavior of chiral systems. Int J Org Chem 2:224–232

    Article  CAS  Google Scholar 

  • Klika KD, Budovská M, Kutschy P (2010a) NMR spectral enantioresolution of spirobrassinin and 1-methoxyspirobrassinin enantiomers using (S)-(−)-ethyl lactate and modeling of spirobrassinin self-association for rationalization of its self-induced diastereomeric anisochronism (SIDA) and enantiomer self-disproportionation on achiral-phase chromatography (ESDAC) phenomena. J Fluor Chem 131:467–476

    Article  CAS  Google Scholar 

  • Klika KD, Budovská M, Kutschy P (2010b) Enantiodifferentiation of phytoalexin spirobrassinin derivatives using the chiral solvating agent (R)-(+)-1,1′-bi-2-naphthol in conjunction with molecular modeling. Tetrahedron Asymmetry 21:647–658

    Article  CAS  Google Scholar 

  • Klika KD, Wzorek A, Soloshonok VA (2018) Internal chirality descriptors iR and iS and ire and isi. A proposed notation to extend the usefulness of the R/S system by retaining the sense of stereochemistry in cases of ligand ranking changes. Chirality 30:1054–1066

    Article  CAS  PubMed  Google Scholar 

  • Klussmann M, Iwamura H, Mathew SP, Wells DH Jr, Pandya U, Armstrong A, Blackmond DG (2006a) Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441:621–623

    Article  CAS  PubMed  Google Scholar 

  • Klussmann M, White AJP, Armstrong A, Blackmond DG (2006b) Rationalization and prediction of solution enantiomeric excess in ternary phase systems. Angew Chem Int Ed 45:7985–7989

    Article  Google Scholar 

  • Klussmann M, Mathew SP, Iwamura H, Wells DH Jr, Armstrong A, Blackmond DG (2006c) Kinetic rationalization of nonlinear effects in asymmetric catalysis based on phase behavior. Angew Chem Int Ed 45:7989–7992

    Article  CAS  Google Scholar 

  • Klussmann M, Izumi T, White AJP, Armstrong A, Blackmond DG (2007) Emergence of solution-phase homochirality via crystal engineering of amino acids. J Am Chem Soc 129:7657–7660

    Article  CAS  PubMed  Google Scholar 

  • Kojo S (2010) Origin of homochirality of amino acids in the biosphere. Symmetry 2:1022–1032

    Article  CAS  Google Scholar 

  • Kojo S, Tanaka K (2001) Enantioselective crystallization of d,l-amino acids induced by spontaneous asymmetric resolution of d,l-asparagine. Chem Commun. https://doi.org/10.1039/B105663H

    Article  Google Scholar 

  • Kojo S, Uchino H, Yoshimura M, Tanaka K (2001) Racemic d,l-asparagine causes enantiomeric excess of other coexisting racemic d,l-amino acids during recrystallization: a hypothesis accounting for the origin of l-amino acids in the biosphere. Chem Commun. https://doi.org/10.1039/B409941A

    Article  Google Scholar 

  • Koppenhoefer B, Trettin U (1989) Is it possible to affect the enantiomeric composition by a simple distillation process? Fresenius’ Z Anal Chem 333:750

    Article  Google Scholar 

  • Kozma D, Kassai C, Fogassy E (1995) Enantiomeric enrichment by the use of density differences between racemic compounds and optically active enantiomers. Tetrahedron Lett 36:3245–3246

    Article  CAS  Google Scholar 

  • Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926

    Article  CAS  PubMed  Google Scholar 

  • Kwart H, Hoster DP (1967) Separation of an enantiomorph and its racemate by sublimation. J Org Chem 32:1867–1870

    Article  CAS  Google Scholar 

  • Laerdahl JK, Schwerdtfeger P, Quiney HM (2000) Theoretical analysis of parity-violating energy differences between the enantiomers of chiral molecules. Phys Rev Lett 84:3811–3814

    Article  CAS  PubMed  Google Scholar 

  • Lorenz H, Perlberg A, Sapoundjiev D, Elsner MP, Seidel-Morgenstern A (2006) Crystallization of enantiomers. Chem Eng Proc 45:863–873

    Article  CAS  Google Scholar 

  • Ma JS (2003) Unnatural amino acids in drug discovery. Chim Oggi Chem Today 21:65–68

    CAS  Google Scholar 

  • Maeno M, Tokunaga E, Yamamoto T, Suzuki T, Ogino Y, Ito E, Shiro M, Asahi T, Shibata N (2015) Self-disproportionation of enantiomers of thalidomide and its fluorinated analogue via gravity-driven achiral chromatography: mechanistic rationale and implications. Chem Sci 6:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens J, Bhushan R (1992) Resolution of enantiomers with achiral phase chromatography. J Liq Chromatogr Relat Technol 15:1–27

    Article  CAS  Google Scholar 

  • Martens J, Bhushan R (2014) Purification of enantiomeric mixtures in enantioselective synthesis: overlooked errors and scientific basis of separation in achiral environment. Helv Chim Acta 97:161–187

    Article  CAS  Google Scholar 

  • Martens J, Bhushan R (2016) Enantioseparations in achiral environments and chromatographic systems. Isr J Chem 56:990–1009

    Article  CAS  Google Scholar 

  • Mastai Y, Völkel A, Cölfen H (2008) Separation of racemate from excess enantiomer of chiral nonracemic compounds via density gradient ultracentrifugation. J Am Chem Soc 130:2426–2427

    Article  CAS  PubMed  Google Scholar 

  • Matusch R, Coors C (1989) Chromatographic separation of the excess enantiomer under achiral conditions. Angew Chem Int Ed 28:626–627

    Article  Google Scholar 

  • Meierhenrich UJ, Muñoz Caro GM, Bredehöft JH, Jessberger EK, Thiemann WH-P (2004) Identification of diamino acids in the Murchison meteorite. Proc Natl Acad Sc USA 101:9182–9186

    Article  CAS  Google Scholar 

  • Mikami K, Fustero S, Sánchez-Roselló M, Aceña JL, Soloshonok VA, Sorochinsky AE (2011) Synthesis of fluorinated β-amino acids. Synthesis 2011:3045–3079

    Article  CAS  Google Scholar 

  • Monde K, Harada N, Takasugi M, Kutschy P, Suchý M, Dzurilla M (2000) Enantiomeric excess of a cruciferous phytoalexin, spirobrassinin, and its enantiomeric enrichment in an achiral HPLC system. J Nat Prod 63:1312–1314

    Article  CAS  PubMed  Google Scholar 

  • Morowitz HJ (1969) A mechanism for the amplification of fluctuations in racemic mixtures. J Theor Biol 25:491–494

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Tateishi K, Tsukagoshi S, Hashimoto S, Watanabe S, Soloshonok VA, Aceña JL, Kitagawa O (2012) Self-disproportionation of enantiomers of non-racemic chiral amine derivatives through achiral chromatography. Tetrahedron 68:4013–4017

    Article  CAS  Google Scholar 

  • Nanita SC, Cooks RG (2006) Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew Chem Int Ed 45:554–569

    Article  CAS  Google Scholar 

  • Nicoud R-M, Jaubert J-N, Rupprecht I, Kinkel J (1996) Enantiomeric enrichment of non-racemic mixtures of binaphthol with non-chiral packings. Chirality 8:234–243

    Article  CAS  Google Scholar 

  • O’Donnell MJ, Delgado F (2001) Enantiomeric enrichment of α-amino acid derivatives: recrystallization of N-Fmoc α-amino acid tert-butyl esters. Tetrahedron 57:6641–6650

    Article  Google Scholar 

  • Ogawa S, Nishimine T, Tokunaga E, Nakamura S, Shibata N (2010) Self-disproportionation of enantiomers of heterocyclic compounds having a tertiary trifluoromethyl alcohol center on chromatography with a non-chiral system. J Fluor Chem 131:521–524

    Article  CAS  Google Scholar 

  • Paquette LA, Lau CJ (1987) An example of spontaneous resolution by sublimation. J Org Chem 52:1634–1635

    Article  CAS  Google Scholar 

  • Perry RH, Wu C, Nefliu M, Cooks RG (2007) Serine sublimes with spontaneous chiral amplification. Chem Commun. https://doi.org/10.1039/B616196K

    Article  Google Scholar 

  • Plasson R, Kondepudi DK, Bersini H, Commeyras A, Asakura K (2007) Emergence of homochirality in far-from-equilibrium systems: mechanisms and role in prebiotic chemistry. Chirality 19:589–600

    Article  CAS  PubMed  Google Scholar 

  • Pracejus G (1959) Optische Aktivierung von N-phthalyl-α-aminosäure Derivaten durch tert.-Basen-Katalyse. Liebigs Ann Chem 622:10–22

    Article  CAS  Google Scholar 

  • Pratt Brock C, Schweizer WB, Dunitz JD (1991) On the validity of Wallach’s rule: on the density and stability of racemic crystals compared with their chiral counterparts. J Am Chem Soc 113:9811–9820

    Article  Google Scholar 

  • Qiu W, Gu X, Soloshonok VA, Carducci MD, Hruby VJ (2001) Stereoselective synthesis of conformationally constrained reverse turn dipeptide mimetics. Tetrahedron Lett 42:145–148

    Article  CAS  Google Scholar 

  • Quack M (2002) How important is parity violation for molecular and biomolecular chirality? Angew Chem Int Ed 41:4618–4630

    Article  CAS  Google Scholar 

  • Reyes-Rangel G, Vargas-Caporali J, Juaristi E (2017) Asymmetric Michael addition reaction organocatalyzed by stereoisomeric pyrrolidine sulfinamides under neat conditions. A brief study of self-disproportionation of enantiomers. Tetrahedron 73:4707–4718

    Article  CAS  Google Scholar 

  • Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Izawa K, Aceña JL, Liu H, Soloshonok VA (2016) Tailor-made α-amino acids in the pharmaceutical industry: synthetic approaches to (1R,2S)-1-amino-2-vinylcyclopropane-1-carboxylic acid (vinyl-ACCA). Eur J Org Chem 2016:2757–2774

    Article  CAS  Google Scholar 

  • Schurig V (2009) Elaborate treatment of retention in chemoselective chromatography—the retention increment approach and nonlinear effects. J Chromatogr A 1216:1723–1736

    Article  CAS  PubMed  Google Scholar 

  • Sha W, Zhang L, Zhang W, Mei H, Soloshonok VA, Han J, Pan Y (2016) Catalytic cascade aldol–cyclization of tertiary ketone enolates for enantioselective synthesis of keto-esters with a C–F quaternary stereogenic center. Org Biomol Chem 14:7295–7303

    Article  CAS  PubMed  Google Scholar 

  • Siegel JS (1998) Homochiral imperative of molecular evolution. Chirality 10:24–27

    Article  CAS  Google Scholar 

  • Soai K, Kawasaki T, Matsumoto A (2018) Asymmetric autocatalysis of pyrimidyl alkanol and related compounds. Self-replication, amplification of chirality and implication for the origin of biological enantioenriched chirality. Tetrahedron 74:1973–1990

    Article  CAS  Google Scholar 

  • Soloshonok VA (2006) Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew Chem Int Ed 45:766–769

    Article  CAS  Google Scholar 

  • Soloshonok VA, Berbasov DO (2006a) Self-disproportionation of enantiomers on achiral phase chromatography. One more example of fluorine’s magic powers. Chim Oggi Chem Today 24:44–47

    Google Scholar 

  • Soloshonok VA, Berbasov DO (2006b) Self-disproportionation of enantiomers of (R)-ethyl 3-(3,5-dinitrobenzamido)-4,4,4-trifluorobutanoate on achiral silica gel stationary phase. J Fluor Chem 127:597–603

    Article  CAS  Google Scholar 

  • Soloshonok VA, Izawa K (2009) Asymmetric synthesis and application of α-amino acids, vol 1009. ACS symposium series. Oxford University Press, Oxford

    Google Scholar 

  • Soloshonok VA, Sorochinsky AE (2010) Practical methods for the synthesis of symmetrically α,α-disubstituted-α-amino acids. Synthesis 2010:2319–2344

    Article  CAS  Google Scholar 

  • Soloshonok VA, Klika KD (2014) Terminology related to the phenomenon ‘self-disproportionation of enantiomers’ (SDE). Helv Chem Acta 97:1583–1589

    Article  CAS  Google Scholar 

  • Soloshonok VA, Gerus II, Yagupoľskii YL, Kukhar VP (1987) Fluorine containing amino acids. III. α-trifluoromethyl amino acids. Zh Org Khim 23:2308–2313

    CAS  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ, Van Meervelt L (1999) Asymmetric synthesis of novel highly sterically constrained (2S,3S)-3-methyl-3-trifluoro-methyl- and (2S,3S,4R)-3-trifluoromethyl-4-methylpyroglutamic acids. Tetrahedron 55:12045–12058

    Article  CAS  Google Scholar 

  • Soloshonok VA, Ueki H, Yasumoto M, Mekala S, Hirschi JS, Singleton DA (2007) Phenomenon of optical self-purification of chiral non-racemic compounds. J Am Chem Soc 129:12112–12113

    Article  CAS  PubMed  Google Scholar 

  • Soloshonok VA, Roussel Ch, Kitagawa O, Sorochinsky AE (2012) Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications. Chem Soc Rev 41:4180–4188

    Article  CAS  PubMed  Google Scholar 

  • Soloshonok VA, Wzorek A, Klika KD (2017) A question of policy: should tests for the self-disproportionation of enantiomers (SDE) be mandatory for reports involving scalemates? Tetrahedron Asymmetry 28:1430–1434

    Article  CAS  Google Scholar 

  • Sorochinsky AE, Soloshonok VA (2013) Self-disproportionation of enantiomers of enantiomerically enriched compounds in topics in current chemistry. In: Schurig V (ed) Differentiation of enantiomers II, vol 341. Springer, Berlin, pp 301–340

    Chapter  Google Scholar 

  • Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA (2013a) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; part 1: alkyl halide alkylations. Amino Acids 45:691–718

    Article  CAS  PubMed  Google Scholar 

  • Sorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA (2013b) Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids. Amino Acids 45:1017–1033

    Article  CAS  PubMed  Google Scholar 

  • Sorochinsky AE, Aceña JL, Soloshonok VA (2013c) Self-disproportionation of enantiomers of chiral, non-racemic fluoroorganic compounds: role of fluorine as enabling element. Synthesis 45:141–152

    CAS  Google Scholar 

  • Sorochinsky AE, Katagiri T, Ono T, Wzorek A, Aceña JL, Soloshonok VA (2013d) Optical purifications via self-disproportionation of enantiomers by achiral chromatography: case study of a series of α-CF3-containing secondary alcohols. Chirality 25:365–368

    Article  CAS  PubMed  Google Scholar 

  • Storch G, Haas M, Trapp O (2017) Attracting enantiomers: chiral analytes that are simultaneously shift reagents allow rapid screening of enantiomeric ratios by NMR spectroscopy. Chem Eur J 23:5414–5418

    Article  CAS  PubMed  Google Scholar 

  • Suchý M, Kutschy P, Monde K, Goto H, Harada N, Takasugi M, Dzurilla M, Balentová E (2001) Synthesis, absolute configuration, and enantiomeric enrichment of a cruciferous oxindole phytoalexin, (S)-(−)-spirobrassinin, and its oxazoline analog. J Org Chem 66:3940–3947

    Article  CAS  PubMed  Google Scholar 

  • Sugahara H, Meinert C, Nahon L, Jones NC, Hoffmann SV, Hamase K, Takano Y, Meierhenrich UJ (2018) d-Amino acids in molecular evolution in space—absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. BBA Proteins Proteom 1866:743–758

    Article  CAS  Google Scholar 

  • Suzuki Y, Han J, Kitagawa O, Aceña JL, Klika KD, Soloshonok VA (2015) A comprehensive examination of the self-disproportionation of enantiomers (SDE) of chiral amides via achiral, laboratory-routine, gravity-driven column chromatography. RSC Adv 5:2988–2993

    Article  CAS  Google Scholar 

  • Tarasevych AV, Sorochinsky AE, Kukhar VP, Chollet A, Daniellou R, Guillemin J-C (2013) Partial sublimation of enantioenriched amino acids at low temperature. Is it coming from the formation of a euatmotic composition of the gaseous phase? J Org Chem 78:10530–10533

    Article  CAS  PubMed  Google Scholar 

  • Tateishi K, Tsukagoshi S, Nakamura T, Watanabe S, Soloshonok VA, Kitagawa O (2013) Chiral initiator-induces self-disproportionation of enantiomers via achiral chromatography: application to enantiomer separation of racemate. Tetrahedron Lett 54:5220–5223

    Article  CAS  Google Scholar 

  • Terada S, Hirai M, Honzawa A, Kitagawa O, Kamizela A, Wzorek A, Soloshonok VA (2017) Possible case of halogen bond-driven self-disproportionation of enantiomers (SDE) via achiral chromatography. Chem Eur J 23:14631–14638

    Article  CAS  PubMed  Google Scholar 

  • Tia M, Cunha de Miranda B, Daly S, Gaie-Levrel F, Garcia GA, Powis I, Nahon L (2013) Chiral asymmetry in the photoionization of gas-phase amino-acid alanine at Lyman-α radiation wavelength. J Phys Chem Lett 4:2698–2704

    Article  CAS  Google Scholar 

  • Ueki H, Yasumoto M, Soloshonok VA (2010) Rational application of self-disproportionation of enantiomers via sublimation—a novel methodological dimension for enantiomeric purifications. Tetrahedron Asymmetry 21:1396–1400

    Article  CAS  Google Scholar 

  • Vauquelin LN, Robiquet PJ (1806) La découverte d’un nouveau principe végétal dans le suc des asperges. Ann Chim 57:88–93

    Google Scholar 

  • Viedma C, Cintas P (2011) On the chiral homogeneity of nature: from atoms to small molecules. Isr J Chem 51:997–1006

    Article  CAS  Google Scholar 

  • Wallach O (1895a) Zur Kenntniss der Terpene und der ätherischen Oele. Liebigs Ann Chem 286:90–118

    Article  CAS  Google Scholar 

  • Wallach O (1895b) Zur Kenntniss der Terpene und der ätherischen Oele. Ueber gebromte Derivate der Carvonreihe. Liebigs Ann Chem 286:119–143

    Article  CAS  Google Scholar 

  • Wzorek A, Klika KD, Drabowicz J, Sato A, Aceña JL, Soloshonok VA (2014) The self-disproportionation of the enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study. Org Biomol Chem 12:4738–4746

    Article  CAS  PubMed  Google Scholar 

  • Wzorek A, Sato A, Drabowicz J, Soloshonok VA, Klika KD (2015) Enantiomeric enrichments via the self-disproportionation of enantiomers (SDE) by achiral, gravity-driven column chromatography: a case study using N-(1-phenylethyl)acetamide for optimizing the enantiomerically pure yield and magnitude of the SDE. Helv Chem Acta 98:1147–1159

    Article  CAS  Google Scholar 

  • Wzorek A, Sato A, Drabowicz J, Soloshonok VA (2016a) Self-disproportionation of enantiomers via achiral gravity-driven column chromatography: a case study of N-acyl-α-phenylethylamines. J Chromatogr A 1467:270–278

    Article  CAS  PubMed  Google Scholar 

  • Wzorek A, Sato A, Drabowicz J, Soloshonok VA (2016b) Self-disproportionation of enantiomers (SDE) of chiral nonracemic amides via achiral chromatography. Isr J Chem 56:977–989

    Article  CAS  Google Scholar 

  • Wzorek A, Sato A, Drabowicz J, Soloshonok VA, Klika KD (2016c) Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of β-amino acid esters. Amino Acids 48:605–613

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Wu L, Han J, Soloshonok VA, Pan Y (2015) Assembly of fluorinated quaternary stereogenic centers via catalytic enantioselective detrifluoroacetylative aldol reactions. Angew Chem Int Ed 54:6019–6023

    Article  CAS  Google Scholar 

  • Yasumoto M, Ueki H, Soloshonok VA (2010a) Self-disproportionation of enantiomers of 3,3,3-trifluorolactic acid amides via sublimation. J Fluor Chem 131:266–269

    Article  CAS  Google Scholar 

  • Yasumoto M, Ueki H, Ono T, Katagiri T, Soloshonok VA (2010b) Self-disproportionation of enantiomers of isopropyl 3,3,3-(trifluoro)lactate. J Fluor Chem 131:535–539

    Article  CAS  Google Scholar 

  • Yasumoto M, Ueki H, Soloshonok VA (2010c) Self-disproportionation of enantiomers of α-trifluoromethyl lactic acid amides via sublimation. J Fluor Chem 131:540–544

    Article  CAS  Google Scholar 

  • Záhorsky U-I, Musso H (1973) Veranderungen im Deuteriumgehalt bei partiell optisch aktiven, festen Verbindungen im Massenspektrometer. Chem Ber 106:3608–3613

    Article  Google Scholar 

  • Zhang L, Xie C, Dai Y, Mei H, Han J, Soloshonok VA, Pan Y (2016) Catalytic asymmetric detrifluoroacetylative aldol reactions of aliphatic aldehydes for construction of C–F quaternary stereogenic centers. J Fluor Chem 184:28–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21761132021, JH), the Ministry of Science and Higher Education, Poland (Grant No. 612 561, AW), and IKERBASQUE, the Basque Foundation for Science, Spain (VAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vadim A. Soloshonok or Karel D. Klika.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Handling Editor: J. D. Wade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Wzorek, A., Kwiatkowska, M. et al. The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives. Amino Acids 51, 865–889 (2019). https://doi.org/10.1007/s00726-019-02729-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02729-y

Keywords

Navigation